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EVALUATION

Atta in ing the goals of RADC TPO-5 , Softwar e Cost Red uction requires the

development of methods for pr oduc in g and m easu ri ng software th at is bot h

reliable and easily main tained . This includes development of standards for

writing software that is reliable and maintainable as well as methods for

measuring the software in order to predict its quality.

RADC has undertaken a number of efforts to develop models for predicting

the quality of software. This effort is unique in that it is the first

attempt at using classical pattern recognition technology for analyzing

software. The goal of the effort is to identify structural features of

ccinputer programs that contribute in a negative or positive sense to the

quality of the software. If such features can be identified , then autc*natic

classifiers for predicting the quality of the software , based on these

features, can be designed. In addition, the analysis of the structural

features using pattern recognition techniques , is useful in identify ing

programming constructs and practices that should be avoided in order to

produce quality software .

For the study ,  the On-Line Pattern Analysis and Recognition System

(OLPARS ) at RADC was used. The study demonstrated that such systems are

useful for performing rapid analysis of software structural features.

~~~~~~~~~~~DONALD F. Roberts
Prolect Engineer
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SECTION 1

INTRODUCTION AND SUMMARY

The goal of the research described in this report was the development of

effective algorithms , based on pattern recognition theory and technology , for

the identification of features which contribute to software reliability, and

for the classification of programs into such categories as reliable/unreliable .

It was shown that RADC’s On-Line Pattern Analysis and Recognition System

(OLPARS) provides an effective tool for the analysis of program structural

features. It was possible through the use of OLPARS to apply statistical

tests to determine the relevance of program features in the data base to the

classification of programs. It was possible to replicate some of the results

of earlier studies very rapidly, since OLPARS made an extensive repertoire of

tools available to the user. A number of interesting further results were

also obtained , which added support to recommendations for modern programming

practices developed recently by RADC .

In addition to demonstrating the usefulness of OLPARS as a tool for

program structure analysis , this study included the development of several

research techniques.

First, a large number of program structural features were identified as

potentially relevant to the prediction of program reliability. Algorithms

for extraction of these features were prepared and used to provide inputs to

1—1
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OLPARS. The feasibility of automatic feature extraction from programs was

demonstrated , and several of the structural features proved to be relevant to

factors affecting program reliability.

Second , a technique for automatic derivation of program error rdtes was

developed . Such a technique obtains an estimate of error rates by counting

the number of changes introduced into programs over the course of their

development. It was shown that this technique can produce automatic estimates

of error rates, without reliance upon manually-produced report forms.

Th ird , a method for obtaining reliable estimates of program readability

or understandability was developed and demonstrated . Human subjects were

asked to read and respond to questions about programs in the data base. Both

their subjective estimates of program understandability and objective measures

of the time required and their scores on tests of their knowledge of the

programs were used.

Fourth, methods for obtaining program development time from archival

data were implemented.

One interesting by-product of the study was a scheme for discriminating

among the four programmers who wrote the programs in the data base , on the

basis of the ir programming style .

Finally , a number of substantive results concerning factors which affect

program understandability were obtained . Briefly, it was shown that program

1—2



length was the most critical factor in determining the understandability of

these programs. Other factors which appear to have some effect , when the

effect of l€n~th is held constant , are : number of GOTO statements, number of

RET.RN statements , number of operators per assignment statement , number of

variables used , number of parameters in call statements , number of externally

called sul-routines, number of labels , number of assignment statements , and

number of complex ELSE clauses. A full discussion of substantive results of

this research is included in Section 5.

It should be noted that the data base used for these exper~rr,~ i~ts was

quite small, consisting of 155 programs written in the PL/I language for a

single system by just four programmers. For these reasons , results of the

study cannot be applied uncritically to other software developments. The

emphasis ot the study has rather been on a demonstration of the value of

OLPARS in performing rapid , effective statistical ~.nalyses of program data .

As more extensive data bases become available , OLPARS will provide a tool for

investigating additional languages and other program features to j~rovide a

body of reliable infornation concerning the factors that affect p ro f-r a n

quality.

The remainder of this report includes the following sections :

Section 2 provides background information concerning the goals and

methods of the project.

1-3



Section 3 contains a description of the features extracted from the data

base and the methods used for extracting them. Many features which were

proposed , but which could not be extracted from the given data base , are

described . A description of methods used in the understandability study is

also provided .

Section ‘4 provides a brief overview of OLPARS , together with a review of

the methods used in the study.

Section 5 includes the substantive results of the study, indicating the

features that affected program reliability.

Section 6 contains methodological conclusions of the study, with a

description of the manner in which OLPARS contributed to the study.

Section 7 includes recommendations for further research.

Appendix A contains a detailed description of the understandability

study reported in Section 3.

Appendix B provides program documentation for software produced during

the study.

Appendix C describes the routines by which the data base was generated.

1-4



A ppendix D contains the results of the study which automatically

classified programs according to the author ’s programming style.
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SECTION 2 -‘

BACKGROU ND

: u r in p  the recent past , several models have been developed for the

~r ed ic t ion  and evaluation of software qual i ty .  In this section , one such

:~ode 1 will be brief ly desc ribed. In addition , a discussion of the background

an~ motivation for  the present project will be included .

Schick and Wolverton [9]  evalua ted a stat ist ical analysis done by Hatter

[3] of software reliability data collected by TRW in 1971, during the develop-

merit and operation of large operational software systems. Whenever a software

deficiency was detected , a software problem report (SPR) was issued against

that deficiency.

The method used was a least-squares regression analysis for the estab-

lishment of relationships among variables which were thought to contribute

to software reliability. In this analysis , a surface of best fit i~ deter-

~~~~ for any set of linear relationships between data . A goodness of fit is

then determined . The measure of goodness of fit used is the adjusted index

cf determination , as def in ed by

/
r~ 

- - — ~~ 
est n - 1 (1)

- 

2 t n - T
~ ObS j

where :

2— 1
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est variance of the values of the dependent variable predicted

by the regression equation

obs variance of the actual values of the dependent variable

n the number of data points

T the number of terms in the regression equation

A large value of r2 (approaching 1) means that the estimating equation

accounts well for observed variations in the dependent variable. A small

value of r2 (approaching 0) implies that the variance of the dependent

variable has not been accounted for.

From the results of the regression calculations , the following observa-

tions were derived :

1. The only reliable predictor of the number of SPR’s charged to a

routine is the size of the routine. However , greater than 50%

variance in SPR’s is left unexplained by size.

2. Programmer experience seems to have little effect on the number of

SPR ’s charged to a routine.

3. All possible relationships among the data were not analyzed (only

the most intuitively appealing relationships were tested). Thus,

2-2



it cannot be concluded that  no usefu l  relat ionships ex ist among th~

d a t i .

This schick  and Wblverton study represents a type of research which can

be i ssistei by OLPAR S . Specific factors which are believed to influence

progran perf ormance can be tested , and a model for prediction of rogran

reliability can be developed. In addition , factors in fluencin~ other com~ o-

rents of program quality, such as readability, development time , and error

rates , can be quickly tested.

The exj eriments which will be reported here represent a continuation of

studies begun during the summer of 1973 , near the beginning of a n’w imple-

mentation of OLPARS in the FL/I language under Multics (Contract ~F3O6O2-73-

C-035l). At t~~~t time , structured programming concepts were new and rela-

tively untestec; it was therefore proposed that the OLPARS implementation

~tilize ~-tructured programming techniques and evaluate their effectiveness in

improving prooran quality.

The er-~-husis in the earlier research was on the use of structured coding,

in which control structures were limited to SEQUENCE , DOWHILE , and IFT ENPLfE .

(A preprocessor made it possible to use DOUNTIL and CASE , ~ut the srogranrers

found these extended structures unnecessary and did not use them.) An experi-

::ental design was established , in which two programmers would use structured

coding, and two other programmers would use non-structured forms. t.s it

happe n ed , the enthusiasm of all of the programmers for structured rr ooran~ ir .~

meant that the majority of the prograns were written in structured forir .

2— 3



However , several programs , including a few that had been written before the

start of the evaluation project , included GOTO and other non-structured

control statements.

During the Mult ics  OLPARS development , a number of error report forms

we re used to document the types of program errors which were encountered by

the pro~ r amrners . Although these provided a good deal of quaiitative data ,

they did riot appear to be statistically reliable. The programmers were often

working alone , at late hours, and there was little motivation for keeping

records of their mistakes. For this reason, a more mechanical approach to

the determination of error rates was required. Such an approach will be

described in ~ection 3.1.1.

In the experiments to be reported here, OLPARS was both the tool for the

evaluation , and the system which was to be evaluated . The actual programs

which OLPARS comprises were analyzed by OLPARS itself.

Later, as more substantial systems become available , together with

statistically reliable error report forms and other data, it will be possible

to extend the studies reported here . The purpose of this initial study has

been to demonstrate that OLPARS could be used for rapid evaluation of the

features that contribute to program quality. As a demonstration of such a

capability, it has been completely successful.

2 — ‘4



I A ’: ’A CflLI h ’Tr 0-i

~~ . 1. DATA }tA~,L C H A k A Th b  I ¶ T I C S

Th i s  s & c ~ i on  des ’ r i l ’ some i t  t h .  h i r ~~ r i s i  i s ;  f t h e  da t a

- f r c j ims t o  he in - i y z i ’  b y OLPAR ~ . The - m l  vs is  w i s  p er f  - ‘med on the

~6 O : - ~~~r m m : ;  t~ : i t  make i~ ) 1 ! A I - fl i t s e l f , s i r - - i -  the data  base j  ed fir ’ th~~- :

s u f y - ; S ted of tb  PL/ I o~ ’ ran - di ve io; i ’- t or RADC -is t h Ms it 5 cs

OI !’A F ~T o s - I - i t  m y  y s rem (Con t r ac t  11~~) h O~~-7~~- 5 — O 2 2 6) .

The data h i ~ e s n a  ist s  it  -h r - on  I n ,~ ica 1 ve rsion s of the  OLP A P O 1 r orr ams

~et a il~ of the p r o c e d u r e  used in c r ea t i np  t b  dat - i  base can be t (uril in

A; n iid ix C. The a v e r u - - number of unique cop ies of - s-h : r s r ’ ~ n S

i m i : -~ y 4 , w I t h  a m i n i m u m  of 1 and a m a x i m u m  of 16. The 1 F ~) proor ins

repre- nt  three years of work ( J u n e  1973 th rough  May 1 “6) by r h  f - s r  i-c-

grannmers of t he  M u i t i c s  OLPA R S sy st  -ri d e v e l o p m e n t .  Each of the  p r o - n  ~m m e r c

had rough l y  t h e  same programming i x ~ e r ie n i (t h r ee  were d i t e s t l v  s-st -f

co l l ege  w i t h  some FORTRAN programming exp er ience , m l  one came fi- -m a non-

programm i ng- re l a t ed  t each io l ’  j o b ) ,  i - a s h  ha d a m a t h e m a t i s - - r e l a t e d  cofl ce

back ground ( I . e . ,  ph y s ic s , computer sc ien ce , and mathem at ~~c~~) , and each had

no p rev ious  Ph / I -rm’ r -trnm ing ex n  i - r u - f lee  p r ior  to w o r k i n g  on M u l t i c s  OLPARS.

From a pr c~~rammer ’ s v iewpo in t , OLPAPS can he viewed as an i nt e r a c t i v e

: a t t e r n  ni- ”~ ’r i i t i o n  r y ~- t m  r e q u i rin g  c e r t a i n  graph i c , f i l i -  m a n i p u l a t i o n ,

and m-~ t h ’ m ~i t ic a l capabiliti es . Each pi -o o r - im w r it t e n  for OLPARS performed 

_ _ _  - .



i t s  own g raph ic , f i le  mani pu la t ion , and mathemat ical  operations when re-

qui red , although subprograms either existed or were written to simplify

each (-f these tasks.

The M u l t i — n ;  ()LPARS project was organized in such a way that there was

one p r ’oiec t  leader , wi th  each of the programmers reporting direct ly to h i m .

The p ro j ec t  leader , w i t h  the  support of pat tern recognition analysts , def ined

each task t h a t  would be required , and then assigned each task to one or more

srogrammers . The programmers designed , wrote , and debugged the programs to

the i r  own s a t i s f a c t i o n .  If the programmer experienced any problems in

w r i t i n g  his program , help was sought from the project leader or other related

company personne l .  A f t e r  the program had been debugged , the projec t  leader

tested the programs for further errors, and the errors were corrected by the

pr ogrammer .

Tb.- programming environment was such that each of the programmers was

in - onstant contact with the other programmers. Programs written by one pro-

grammer were usually read by other programmers. Because of this cross-

check i ng , the programming style of one programmer was frequently copied by

the o t h e rs. The original design of the project called for the use of struc-

t i r - i ’ f program code by two of the programmers , w h i l e  the others were to use

non-structured code. Nevertheless , after about two months of programming ,

the enthusiasm of the programmers using structured code had encouraged the

others to begin writing in a similar style. By the end of the project , all

the programmers were using structured code.

3-2
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In sp ite of t h i n ;  s h i r - i n g  of styles , however , there w e ;  s u f f i  i en r  d i f f e r -

ence i m i n y  tb . -royr ’ .nm. n’ - t o  p e r m i t  OLPARS to  d i s c r i m i n at e  among t h e m .  The

resui  - - of h i s  st  sly 1 r’c5~r Imrn i ng ‘ - t v l e s  are reported in A pp en d i P .

The t is e o f  H i s  l i t i 1- i s e  t o ev a l u a te  program q u a l i t y  h - i l ‘ a v i - r a l I n -  i w —

l~~~ k e - . ; ‘ e n - t  in ly  I he st e  5 - t  ura l f e- it u r e s  of the  programs could  be c ’v i J u a ’ 1 ,

for the’ ; w e r e  -:‘ n t a  i ned in the p r o - r i m s themselv  Other , more t r i o - - ~~i - t i t

data were not available or were only available as rough approximations to the

ac tual  :l~i t  ~~. For -  examp le , i n f o r ’ m i t i o n r  such as error reports  ansi i c t i r l

devei r - n . - n t  r i n s e were o r t  a v a i l a b le . A pprox imat ions  to these  v a r i a b le s  won ’.-

le r i ved I corn t h e  Multics archival i n f o r m a ti o n .  A l t h o u g h t h e  H - i t - -i base was

d e f i c i e n t  in t h e  i l l  o t he r  ways , it still provided a basis for the - ‘ v - i lu -

i t  ion of s a t t - -r’ n ;i - i  y, n i t : o n  t e c h n i ques fsr determin inry software q u a l i t y .

3 .2 .  FEATURE D E F I N I T I O N

This section d e r or i b e s  t he  process of f e a t u r e  s e l e ct i o n , and inc lude s

an it.- - ;-iz ed l is t  of a l l  f-- at m-es w h i c h  were c o n s i — l i - r - e d  for  e xt r a c t i o n .  The

i~~st wa cent l i ed  by r - e v i e w i r ~~ t hose  c h a r a c t e r i st i c s  of programs w h i c h  were

t h o uCb t  ~~~~~- on t  r ’ i f u t c n  to proyr-ani r e l i ab i l i t y / u n re l i ah i l it y .

In the following i temized  l i s t  of fear r r~~~, a j u s t i f i c at i o n  for  t h e

inc~~uniofl or exclusion of each feature is pr esen ted .

3-3
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Pirinie , the  course of f e at u r e  g e n e r a t i o n  i r l  si-I - tion , three fac to r s

n - i impor t  i t  ~fl il - t m - m i n i n g  t h e  f i n a l  f ea t u r e  space . Th .’v w i - r i - :  pe r t  inence

rd i - h i  L i l y , - iso f mea in- -mi nt , arid i - in gu a g f -  i r idep end en ce

:H e  y,on . - r - i t . - l  var iables  f - 1  i nt e  t tie t - - - 1 l o w i n g  c la s s i f i cat  ions :

1. -~t r i i c  t r n - a l Fea tures

a. use of v a r i a b l e s

Ii . ‘on~ rol f low m e t r i c s

c .  s i m p l e  counters

d. : m r p l . -x counters

e. comments  or reading a i d s

2. N - - n - H r  r u c t u r al  Features

3. Mi - -i - a n o n ;  of Program Q u a l i t y

hI sr sF V A R I A R L E f ;

1. St ru tu ra l Features

- i .  Use of V- .m iaf-les

The f e a t u r e s  selected are language i n dep e n d e n t .  However , t h e  m eth o ds  for
e x t r a c t i n g  these features are dependent on the particular programming lan-
guage used.
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o Number of variables declared . This was easily measured by counting

names in the compiler ’s cross-reference listing . This is thought

to influence the size and complexity of a program , and hence a

person ’s inability to deal effectively with the program.

o Number of unreferenced variables. These are variables declared , but

never used; as such, they represent oversights or poor proofreading.

o Locality of variable reference. This measures the extent to which

references to a single variable tend to cluster in a small section

of the source code. It was measured by considering the text as

a real number between 0 and 1, where each line corresponds to a

discrete number . Each reference to a variable was represented as

the real number of the line on which it occurred. The variance of

all instances of each variable was computed , and the global feature

became the mean of all such variances.

It was hoped that this measure would yield substantial information

about the inf luence  of any “working set” effect when writing (or

reading ) a program. If all variables occur in highly local con-

texts , then it should be easier to understand the function of each.

o Number of pointer variables . Pointer type variables in PL/I do for

data structures what GOTO statements do for control structures. It

was conjectured that the indiscriminant use of pointer variables

would lead to unstructured (and hence less mentally manageable )

data flow.
3—5



o Numb er -  i f  b e e f  var-iah l .— n ; .  H ised v a r i a b les in PL/ I j r ’~- a mec hanism

wI n -l i t n - - s a pointer v a r i a bl e .  This t y l m y  is dyn amic and thus

l oon ; m t  al low i Cons L s t ~~m t  l i t  j c - i t ~~~J y .  is , or enforce u n i f o r m  use

- H i  cr -s .  For t h i s  r- s -i son , base l y i n  i i b l . m s  wi - r e  thought  to be

hazi r ’ l ’ - r ;  t o  I f ; - r e l i a b i l i ty  ot  a p r o e r ’ ilmc . No t - t h a t  the  measure—

m e r it  t t ~r ’ t ’ i n ; of the number of -J-;’c l ire - I items , r o t the number of

ini st i n i . - ’ : ;  of -a - l n  i t em .

o Number -  of um l i nc  I a r c H  variables . T h i n ;  in ; an a t t r i b u t e  which  PL/ I

a’ ’ko w l e I y - -s t h rough  it s d e c H r - i t i o n  se m an t i c s .  I f  a va r iab le  is

r e f  - ‘r- enced but  rio i declared , th i n - . ’ exists the  pos s ib i l i t y  of an

i n ’ P - t -n c t - - I  typograph i c a l  error acci-l ’rrt ly becoming a v a r i a b l e .

P . ( ‘cn t r ’o l  Flow M e t r i c s  
— 

-

o ~~- -:t i m 7 . By measuring the extent to whi -h DO statements occur

n - - c t- - I i n - ; t f - r  DO t - .t - -r - - - ri ts , some r a t Hr i n ; ~~i i n e d  of r h o  corn—

p l i ’x i t y  of t i c . -  i m I l ’i - . - n t - ’  itre ’m’ ithm . Ps i:’ t he  same log ic- ,

bL ’~~I t i — F NL c ;_ t i m r ~ and IF 1tc ~~t i n y  w e r ’ ’ also m e a su n - e d .

o Max i ns- rn mi - - s t  ini ~; . By me i s i r -  i n ’  the  ex t  em i t  to whi  ‘P any s t a t i - m , - : nt

may occur rr - n - ; t - - t  in  any o t h - - r ’  S t i t . ’ m c ; - ’ n t , t h e  overal l  c o r n i ] e x i t y  of

the  a l g o r i t h m  is m e - i i n u r - , l .  The on ly  s tat e m e nt s  which  were capable

of c a nt a i n i n g  oth e r s  i n  the  con t ext of t h i s -  p r o i - c - t  were DO , BEGIN ,
I

and IF’ .
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o Paragraphing. The white space surrounding program source text is

an important -f °t .-r- ni in -r of the p~- r-ceived organization and readability

of a — r - ) y r ’ l m .

o IF h a l i m i c e .  I t  was conjectcir’ .’ I that understandability su f f e r e d

wh e n e v - ’r  t he  TRUE c lause  of an IF s t a t e m e n t  and the FALSE clause

won-c y r ’ s s ly  d i i t  ‘r e n t  in  s i z - , and t h e  FALSE c lause was o n ly  one

or -  two s ta tements  long . The reasoning was t h a t , once a person had

read throug h a l eng th y compound s ta tement  before encoun te r ing  the

ELSE clause , the  sense of the  ori g inal  condi t ion  w o u l d  have been

f o r g o t t e n .  This o u t - o f - b a l a n c e  construct  was a f r equen t  occurrence

in the  da ta  bas . When the  s ing le  s ta tement  in a FALSE claus e is

an error n - op art , reversal of the sense of the orig inal  Boolean con-

d i t i o n  w i l l  a l low a reader to keep fewer fac t s  in h i s  mind  at  once ,

serving to modula r i ze  the  code.

o Comp lex IF c lauses .  The IF s t a t emen t  is P L / I ’ s prin iry de ci -ion

mechanism. To the extent that statement alternatives are s i m I l e ,

the decision represented by the IF will he sim ~ le . A simp le nnt~~te-

ment is one which contains no other statements. This metric is

t h u s  a crude approximation of control flow complexit y .

o Complexity measures C2, P2. These metrics (developed by Mitre [11)

are based on techniques which take a control flow graph as input

j and produce a scalar as output . The control flow graph is reduced

by the method to its simplest structura l form . The output from

- 
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n -

t i - ’  :rft ’ in :cr m ’ --: is I in i- - i n-ly rr- 1,ito; t o  the n umlc - m ’;f s imp le  statern i - rc m s

conc . i j o i n , .  - and t~~, ‘ m in t - - f - ~~~ rot  I low t - n  t I n  which do f 3 ~ in to a

- H r - I  - n - - pu - n - n . - , de c i si ’ ’ nc , - n ’  i t e r a t i o n  m o d - i .  T h i n ’ ‘ - - - nd i - i l

mt - - i  r~- , - r n ri t i~ n -  ~~~ - I - w h i c h  con t ro l f l o w  F ; S i r - n t i n - i - I in

I h  i n p u t  i 1 c i i  I t en .

o C o m p ; - ’x t ’’ of IF  st , t . ’ m - r r t s .  This m e t r i c  r e p r i n n ; n t s  i 5 - - i  nt-

t h - -  ‘ ‘nnn n - I exity of  t h e  Boolean o x j ’n ’ c - n ; o i o n  a s s oc i at ’ f  w i t  - - ii’

sl it - -sent . Since comprehension of decm s ion no  in ts i n n  r i n c i - i l  t o

comrnprehens ion of a program , t h i n :  w a n ;  felt to refi t n’ s- n - il

unn h-r :ntandability.

o Complex i ty  f d e c l ar - a t i o n / i nit i al i z a t i o n .  D e cl a r a t io n - il ‘omn- I~-:-: t’;

sn - - i  u n - -s dat-i nI~mn.:n f1nabi1 ity just as control flow complexity

measures algorithm manageability .

o Connc ~ iexit’i of I/O st - e~ ~n :n- m c t s .  Frequent and-sr obscure file manit 1-

l at  i o n , ,  can he i soit - - - of confusion ts a program author ( a r c - n  t hus

lead to u n r e l i i f , i l i t ’ ; ) .

c. Sinni t ir ;  ( f lu t t e r ; :

All m e t r  i -; . n i  t h i n - n~~’ :1 i t  - i n -  u n t n .: of the  number-  of occurrences  of

son’;’ “ V ic- i l”  rn ’ /n m -~~- 1 i - str-ir ~ liii 
y i n  - t  of t h em are v a l i d  for al l  A IJ .H~ L—

P i n e d  languages. The just ificration for imp ly ‘ -o t i n i t  Hg syni i t  ic ‘-:t rir ctmrc s

1-  tw st - l ’I : 1) if GOTO st-.tements - i n l  l u  cons i -b - - r in d  harmful , perhaps - - I  he r

3—8
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; t . - l I - - ’- . - ’ n t -  in  a lso  1- - - harmful , and 2 )  r ’- I i t i o n s h ip s  between c er t a in  fea tu res

may he - - om it i t-n ’ I .  i t was expected that at least program length  and  GOTO

- - t a t  - - n ’ .
- 

o ’ ‘ S i r 
~~

. c~1~ ,t~ ’ w ’  n one r - e l a t i o r c s h i m  to orogr -am r el i ab il  i t y .

An n - r i p  I I : -  c -u n !  - ‘ m n  s;ig~~es t e d  were the  numbers  of l i nes , lexemes , assi gn—

mni . - m r t  n s  In -ni t ;  I/O  st a t e m e n t s , ex te rna l  calls , external  procedures , forma l

- - i n ’  rr n- - - - n - - - , ,i - t u . 1 p a r a m n c ’ l m ’ ;- : , semico lons , global var iables , types of I /O

tn~ .. t - ; . - - n ! s , i n - f  t he  f o l l o w i n g  PL/ I p r i r r i t i v e s :  ALLOCATE , BEGIN , CALL , DECLARE ,

DO , DO W H I L E , P N I ’ , FREE , LABEL , GET , GOTO , IF , ON , PROC , PUT , READ , RETURN ,

i- .P VER i’ , STOP , W R I T E .

H .  — amp lex Hu n t e r s

o M r l t i p le t a c f , -- t  assi gnment s ta tements .  These are s t a tements  of

the form Vi , V2 , V3 = X.  It was hypothes ized  tha t  the  use of these

.n t - i t e m e n t s  would a f f e c t  program r e l i abi l i t y .

o Lexemes * in executable  s t a t e m e n t s .  The length  or size of a s tate-

men t is a roug h measure of its comp lex i ty . This  m e t r i c  is a

r ep resen ta t ion  of the  to ta l  s ize of a l l  executable  s tat e n n t n-, in

a program.

A lexeme is the smallest syntactic construct of the language tl4].
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o Operators per ass ignment s ta tement .  This is a rough measure of the

a r i t h m e t ic  complex i ty  of a program . It serves to break the not ion

of comp l e x i t y  in to  one of i ts pr imary  components.

o Length  of I /O  l i s ts .  The length  of an I/O list is a function of the

ronn n ’i ’x it’z at the  I /O  being performed by the program. Due to the

heavy use of M u l t i c s  pointers  into  segments in the  data base , t h i s

metric is not as accurate as it would be in the general case.

o Non-scalar data structures. This metric is a measure of the number

of instances of data structures other than scalars. The only such

data structures used in the data base are arrays, and for this

reason data structure instances were not counted.

o Dimensions of arrays. The sum of the dimensionalities of all multi-

dimensional variables forms an indicator of data structure com-

plexity and was measured for each program.

e. Comments or Other Reading Aids

o N ;-iber of comments. This , and other comment-related metrics , are

rough approximations to the meaningfulness of comments. The number

of comments may predict the readability.

o Characters per comment . Comments may he analyzed in any of several

ways in an attempt to estimate the quality of a particular comment .
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l ’ x t n- . i - t  i m c~’, th e l.-rc ~n th of each ‘n un imci ’~r it was an a t t n ’ m n p t  to di - n 3d .-

i - nj  iri cally whether t e r n n e  or lengthy comments tended to occur in

m ’ o l i i h L e  programs .

o D e n s i t y  of non-b lank  cli i r a c t i - n ’ n :  w i n l i n  a l i n e .  I t  was h y p o t h e s i z e d

tI - i t large numnb ’r”; c --f nom — I l inil n har ’ i- -te rn ; on a l i n e  had a de t r i—

meri t il effect on the ability of a n - - r ’ - - - n ‘ - ,  analyze a program

listing efficiently.

o Loca l i ty  of comments .  This  m e t r i c  was measured in the  same way as

f h -  l o ca l i t y  of variable reference , and i ts  r a t iona le  was s im i l a r .

The degr- .ni -
~ of c l u s t e r i n’  of comments  about a s ingle mean was assumed

to have some bearIng  on the  comprehens iveness  of comments .

o Dens i ty  of non-blank characters ou ts ide  comments .  An at t empt  is

made here to measure the  proportion of w h i t e  space u t i l i z a t i o n

across the  program text  as a whole.

o V & r i i P I e  name lengths . This  f ’ -iture is an a t t e mp t  to es t imate

meaning f u l n e s s  of var iab le  names.  The working h ypothes i s  was t h a t

a long name probably is more mean ing f u l  than a short one , ari d t h u s

- - o n tr i b u t es  to r ea d a b i l i t y .

2. Non-Structural Features

~~~~~~~~~~, 
- — -  
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There are other variables , not related to program structure , which may

affect the quality of programs. Variables of this type would include (hut

would not be limited to) the following: (1) the amount of testing and yen-

I i -  ition performed on the program (e.g. by the author , by the coder, by other

p n - o cr -an n rnn- ’r tn , etc.), (2) the amount of time spent in designing the program ,

and (3) the design procedures used (e.g. top down program design , chief pro-

grammer team concept , i’t c.).

However , since information of this type was not kept during the imp le-

mentation of OLPARS and thus was not available for this study, these features

wi - r e not considered any further for this effort.

3. M- - isures of Program Quality

Many important aspects of programs fall under the heading of program

-~ua ;ity. 
certain factors directly affect the reliability of the operation of

software , suc h as the number and severity of errors encountered in running

the  program . Other aspects are more related to managerial aspects , such as

rtii - development time of programs and the number of changes a program encounters .

Finally, there are as t- i-ct-n which deal with the software itself. For example ,

the understandability of program can he measured in several ways. How easy

it is for a programmer to read and understand the operation of a program may

have a direct influence on the ease of software maintenance. Such important

op -rations as software implementation and software modification can he

directly affected by the ease with which a programmer can understand , at the

macroscopic and microscopic levels , the functioning of the software .
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~~. ~~. PH Y P ‘A l  H \ , n~ - l LX ’I R A C I l ( - t J

T f n i  s--ct ion r ’ - ’ribe; nI . - i I~~r u j t h r r n ;  i n - - f  i n  e x t r - .- i ct  i n s  r h -  ~- itu r - r ’

~P’scrjl-- -f i n ; - - l i o n ,I.2 . ( T h e  lis t ‘-I f i j i  j r - e n ,  ~ si ’- i i n  this study is -io n—

a~ n e f  i t  F i 8 ’ i ; n ~e 3—1.) -~~n -  mn - m y at t f i - ’ s € -  algor i thms ar - u ’r i d sm;t eo n

t r i o - - - t M it  n n n , h - - y  w il l r ’ - qui ri’ m odification for on ; ’; w i t h  tIe r- S’7 5—

* - ~~ -n or I i cu

, - - I r  -f t h i n . -  : - ~it , n ’ - S  are e x t r a c t - - I  from the PL/I s crm U n ; n . irci - in - ~

- ‘ tt - ’rs ir e ext n i ‘ e f  t n -  -5 t I n- - FL/ I c m ~ i i it  ion l i s t  Hg. The FL/I -s rice

u s ’ Hg ‘-Sn t ,itni - ;m i l ’j F’, I o i t - - n - m m .  w h i c h  follow Multi cs PL/I . , , t i t : iX rules.

~~~~ ~~~ ~ P H ~ ~~~ ~~b’ ~~‘~ ° ~I ’ H 10w 
~~~ 

a t t r i h u t ~’s

1. Th- - - -: of ~~ - ii tin ,’ c r  . i n i - - n header i n n t c r m ’i t i  nm: ahoirt the

l i s t~ n ’ . T ni s in~ - e’nna ion includes program name , 1-1- n t ti s-; PL/I 

-i l-u imp l i-m -m t ‘i- - ni I - i t , da te and t i m e  at wb i ’-h this  pr - s- n - Inn

was cr:r.n lied , mn - I c j . ~ 1 - m r ‘i - c r - f when the compiler was i n i t e r - ; - o g i r e H

2.  Each PL/ i s,tat ’’nc - ’m ’ -ju l ~a r e m en t  number .

‘3 . Fol l o w i ng  t i h - - s t i n i g  is -roos—referer ici- l i — r i n g .  I’ cont u rn ;:

l t t  n -sa t  ion ah o ut  a l l  v - m n i i I ’ l e s  ;s . -d .  This  H t  - - n - c ’  i tio ni is

in - o l imnar ~- m s h i o n .  Some of  the relevant c o l u m n  - - f informa~ ion

are :

IDENTIFIER - t h e  I n - m c i -  of tb. - variable

3—l. ~



Figure 3-1 Features

~0
~i)

v a  o + —  a~O ’O 0 0  ~n.
:i~~—l ni cTj j

4— mI) ~~~~~ 4-~~’~r,i c -m m-~ -m~~~~i 0 ‘In X;~~ co --- ra ~~~~
o number of comments X X X

o average length of comments X X X

o average density of non-blank characters  in x x _ b
comments

o din-tribution of nomm ;mut s throughout program X X X

o number of lines X X X

o average d e n s i ty  of non-blank c h a r a c t e r s  outs ide
comments X X X

o number of mul t i ple assignment statements X X X

o number of variables X X X

o number of semicolons X X X

o maximum nes t ing  level X X X

o maximum BEGIN-END level x x _ b

o maximum IF-THEN-ELSE nes t ing  x x
o mean var iable  name length X X X

b
o number of lexemes X X -

o IF balance X X X

o distribution of variable occurrences vs. program
statements X X

o complexity of assignment statements X X X

o number of assignment statements X X X

o number of pointer variables X X X

o number of based variables X X X

o number of implicitly declared variables X _a 
-

o number of explicitly declared variables X ~~~~ 
-

o number of I/O statements X X X

o number of external calls x x b

o number of external procedures used X X X

o average number of formal parameters in procedure x x _ b

o average number of actual parameters in call
statements X X X
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Figure 3-1 Features (Continued)

~0
0 Q)

Q) i) 
~~~4- 0

~~‘m 0 0  0
~~~~ n r

~-~~ur 4-~~0 4-~~’m
~~ c ~~~~~~ ‘ m i ~
~) 0 0 X 0 f

o.~~a ~~~~
o number of complex IF statements X X X

o number of global van ib len: X X X

o a v - - r - - i ,o- number of each k ind  of I/O statement X X

o average length of I/O list x x
o number of arrays X X X

o total number of dimensions of arrays

o number of ALLOCATE statements x x b

o number of BEGIN statements X X

o number of CALL statements X X X

o number 01 DECLARE statements x x b

o number of DO statements x x
o number of DO WHILE statements X X

o number of END statements X X _ b

o number of LABELS statements X X X
bo number of GET statements x x -

o number of GO TO statements x x x
o number of IF statements X X X

o number of ON condi t ion declara t ions  X x b

o number of procedure declarat ions X x
o number of PUT s ta tements  X X X

o number of READ statements x x b

o n - a n nul - m r of RETURN statements X X X

o number of REVERT statements X X

o number of sro~ statements X X - 
b

o number of WRITE statements x b

o a r m n c u r i t  of math computation x i
C x

o amount of user interaction X 
C x

a- not extracted becau .3e it was a required feature of analyzed programs
b- removed due to small variance
c- extracted during understandability study

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
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STORAGE C l~A~~ 
- - - .g .  ba sed , conn :tant , automatic , param eter , etc.

DATA TYPE - e . g .  in t - ’gr ’r , f loating point , entry , pointer , etc .

ATTRIBUTES F. — - ‘ o n i t r i n s  inform atic-rn about the attribu te s of -u
RF,FEI-LN ~

‘,‘, m n - i , m h le ( e .g. unaligned , external), followi-’l by

r h -  statement number~ - ‘ indicating where the

variable was declared and referenced.

The i~xtr dct i c mn algorithms will work correctly only on FL/I : -r og, rnmrnc ;

which c iu ’ : ’-  no comp ilation errors to be produced when comp iled by the Multi cs

PL/I c- - mp iler.

Thr- - - -’ n - - stifles (named “l . -irse,” “list extract ,” and “count comment-:” )

were wr i ten to extract i-he features listed in Figure 3-1: “list extract ”

ext r irts those feat rri :n from the comp iled FL/I listing , “count comments”

extr-o . ts those features rel,-mte l to comments from the FL/I source listing ,

i mnil “l - -m r ’oe ” extracts the remaining features from the context of the FL/I

S0UI ’~~O listing.

The manner in which each of the features is functionally extract-’ will

be described below. In parentheses next to the feature name will appear the

mum-- of the r o u t i n e  which  ex t rac ted  tha t f . - .uture .

Feature  1 Number of comments  ( ‘ - on i m il comments)

The number of comments is a count of the  n mmrn ber  of /* in  a F L / I  s~. c r r ce
a

-;egmen t. TIn s ’;  a comment  which extends over severa l lines , hut has only one

on thin first l ine , w i l l  be recorded as one comment .
3-16
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c-rture 2 Average  length of comments (count commen ts )

The average .lenmgth of comments is calculated as the t -,t o ]  r ; ;r sI ~~~r o f

characters .i n n ide cortmnnents d ivided by the number of comnnue r ,t s  ( i . i .,  I

1). The total number of characters inside comments is t h e  sum of t h e  s .sn:Ler

of ln- , .ni- characters and non-blank characters between /~ and ~~~/ .  Du - inni- char-

a c t € - r n -  at the beginning and end of a line of a comment are also included in

this sun . It is assumed there are 125 characters per line and thus a l~ rne

a comment which has its last non-blank character in column ~h ar.I Oo tj t l n U . : S

cr . the next line will also be assumed to have L40 blank character’s it tI,e end

of the line.

m ’eature 3 Average density of non-blank characters within comments

( count_comments)

TI - ,e average dennmitv of non-blank characters within ccc-tnem;t s is calcu~~i i - ~

is the nun~er of non-blank characters inside co’uments d i v i s e  by t hr  nu~d’~ r

-
~~~~ c:’~~~r a c ter ~ in; nun s : ents. As in f ea tu re  2 , blanks at ~I;~. ’ end - - ‘ concimnern ~

are included in the number of characters inside iom’ s.ent’ , .

Peatnrre L. Jnifornnity of distribution of comments vs. m ,t aten - - n t  lin es

(count  ~~~~~~~~~~~~~

This feature is a measure of the way in which comments are distr ibu tr n

througho-at a rogramnt . It is felt that many comments spread ti rs-;;rJ out a
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program are better than the same number of comments grouped in one place in

the program . This metric is calculated as follows:

1. Every time the beginning of a comment is encountered (i.e., a / ;‘:) ,

the normalized line number on which the comment occurs is recorded .

(The normalized line number is the comment line number divided by

the total number of lines in the program). This list of numbers

creates a list of every occurrence of a comment.

2. A mean value is then calculated for this list of numbers.

3. The variance from the mean is then calculated and is used for this

feature.

Feature 5 Number of lines (list extract)

This feature is a count of the nu nber of lines in a program. A counter

is incremented each time a new line appears.

Feature 6 Average density of non-blank characters outside comments

(count comments)

The average density of non-blank characters outside comments equals the

number of non-blank characters outside of comments divided by the total

number of characters outside comments. The total number of characters outside
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c - - n t n  e p : i l  - . t o - - n ‘at:. of lank and non—blank  characters .- m i t n ; i d e  c o n s e n t

: n l ’ -t ~ f v i e  , n ~~. f  a~ te m - i ii; -;: of t e x t  are also included in t h i s  s irs .

F- n t  S - ‘ ~ n n s f .- en - of mult  i p I~ - assi gnment ct I t e m n e m l t :n  ( e ns ;- -

A cot :n;t  cm ’ S incremn nernt e l  i ’ - ich  t icn :e a s ta tement  is recogn ~~~~~~~~~~~~ 101,

-- on- - - t~ . n m on- ’ s’- a r i a h l c  occur:-: to t in e left of -in ~issikTnmi r:* u~ ntho~

‘/ 1,  ~~~~~ ~ ‘ ~~, .. . V = expression

th-- t the oounter is incremented once for each v .  where ~ > 1.

e at - ut e ~ ; cn .ber- of var iables  (l i st extract )

A cc ~-. t  - tfe n - sn I r of va r i ab les  declared is o> n rr-i - t~vJ fr -s ~ n n e  c r o s s—

- r : - ~r er.fe Lis~ iro - ann t h e  yultics comp ilation of a FL/I rc-gr~n mr .. The .- - c ti -: - r ,

of t n . n  - r -n~ ,—r’ef -~n er -se l i s t in g  used  a : ipears m n r n h - n n ’  the hen-i :in ,~- 
‘
~~A~ i S

BY :,Ec: ,i~pE T’ATE~’iFlPi .“ A counter in n , incremented each t j un e -u :nes e nmr ’ v  a : n  e in 

‘ l ” T i  ~L: ‘ f i e l d  of the cross—re ~ c r r n r o-nn 1 istin - . TIe -S ounton - is

i n cn  e r er ,t e -l i f  th e  word “ i n t ry ” appears in t i e  ‘ ‘  AT !, TYPE,” n ielc , 1-- - . ly i r o

i - n , : . t n e  :de:,t ::~~er -  is a subroutine name .

r e t s  - - -
~ Non : her - f semicolons (parse)

- - — 
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A counter is incremented once for each semicolon in the source text

w h i c h  occurs outs ide  a l i te ra l  s t r i ng  and outside of a comment. A semicolon

is a l i ne  t e rmina to r  and thus the  number of semicolons is a count of the

number  f s t a t emen t s  in a program .

F eat u r e  10 Maximum n e s t i n g  leve l (parse )

This integer- represents the deepest level of nesting encounter- ed in the

sour-c’- program . It is measured by taking the maximum value (across the entire

source text ) of an integer “nestlevel ,” which is evaluated as follows :

1. Increment for each instance of either a DO , IF , or BEGIN statement.

2. Decrement whenever an END corresponding with either a DO , IF , or

BEGIN is encountered .

This is a rough measure of the depth of nesting of the program . Note

that including the IF statement as a block bracket tends to make a program

look “deep. ” I’hat is , most people do not tend to include the IF statement

a
when estimating depth of nesting.

F’- -iture 11 Maximum BEGIN-END nesting (parse)

- 
This feature is subsumed by feature 10 (maximum nesting level). It

decomposes the notion of nesting depth into one of its component --iri s, i.e.

the nesting created with BEGIN-END brackets.
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-‘ It is measured by incrementing an integer , “beginnes t level,” once for

HF I IN  s ta tement , and decrementing it once for each corresponding END

- s ta tement . The feature value is the maximum value of “beginriest level” across

an emi t i re  source text .
S

Feature 11 Maximum IF-THEN-ELSE nesting (parse)

This feature is subsumed by feature #10. It reflects the maximum depth

of nestir .g generated by the IF-THEN-ELSE construct. It is similar to feature

11 (unaximu~
, BEGIN-END nest ing)  in that a component of depth of containment of

1-lock structures is being measured .

~1axi,mum IF-THEN-ELSE nesting is derived by taking the maximum value

across a source text of an integer called “ifthenelselevel ,” which is derived

by

1. Increment for each IF statement encountered.

2. Decrement whenever an IF S t - n t ’S eSt  terminates.

~lnce an IF statement may contain 2 other statements (each of which may

i.e comnnc -snl) , this value will become greater than one whenever an IF statcrnenst

so nt e ir a s  at least one other IF statement .
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p
The constrto:t :

if < bi> then < el>

else if < b2 > then < e2 >

else if < b3 > then < e3 >

has a nesting level of 3.

Feature 13 Mean variable name length (list_extract)

The mean variable name length is calculated as the sum of all variable

name lengths divided by the number of variables. The variable names and

their lengths are extracted from the “IDENTIFIER” field of the cross-reference

listing. Only those variables declared by DECLARE statements are included i’n

this feature; however, all variables in the current data base were declared.

Feature lL4 Number of lexemes (parse)

This is a count of the number of primitive FL/I lexemes (or tokens, or

atoms) in each source text. Lexemes are groupings of one or more characters

from the source which compose identifiers, simple numbers, operators, and

special symbols.

This feature provides a semantically meaningful measure of program

length.

Comments are not included .
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Feature 15 IF balance (parse)

~iven the syntax:

if exp then trueclause else falseclause

This feature is simply

size of (falseclause ) - size of ( trueclause ) ,

when falseclause is present ; zero otherwise

This measure becomes :

1. Large and positive when the falseclause is much larger than the

trueclause.

2. Zero when both clauses are of equal size .

3. Large and negative when the trueclause is much larger than the

t alseclause .

L~. Zero when there is no falseclause.

Feature 16 Distribution of variable occurrences vs. program statements

(list extract)

This feature is a measure of how localized variable references were .
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This feature is extracted from information provided under the heading

“ATTRIBUTES AND REFERENCES” of the cross-reference listing , and thus no un-

declared variables are included . This feeture is extracted as follows :

1. For each variable:

a. The word “ref” is searched for in the cross-refer-e ice listing .

The information that follows “ref” is a list of statement

numbers indicating where this variable was used.

b. For each reference statement number , this statement number is

recorded (in actuality a normalized statement number is stored ,

i.e. the statement number divided by the total number of linv -s

in the program). This list of numbers creates a list of every

occurrence of a variable.

c. The mean normalized statement number is then calculated for this

list of numbers .

d. The variance from the mean is then calculated and stor-

2. For all variables:

a. The list of numbers generated in ld. creates a list of numbers

which measures the locality reference for each variable.
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The mean value of Id. is calculated and returned as the value

for feature 16. This feature thus measures the locality of

reference for all variables in one program.

Feature 17 Complexity of assignment statements (parse )

Thi n ’ is a crude measure of assignment statement complexity. It simply

count s , for each assignment statement , the number of ar i thmetic and logical

operators in the statement.  (All  such statements have a complexity of at

least one, since the initial “~~ “ is tabulated.)

The measure for the entire source text is the mean number of operators

a. n’oss all assignment statements.

F e a tur e  l~ Number of assignment statements (parse)

count is maintained of the number of assignment statements in each

source text . An assignment statement with more than one ident i f ie r  as its

lef tmost  part constitutes one statement in this  context . ( c f .  f ea tu re  7 )

F eature 10 Number of pointer variables ( l ist_extract )

A counter is incremented if , for a j~~~’ ticu 1ar  var i ab ie , the won “nointer ’

~~~ ~- - -~rs in the  “D ATA TYP E” field of the cross-reference l i st ing  of those

variables declared by a DECLARE statemer.t.
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feature 20 Number of based variables (list_extract)

A counter is incremented if, for a partIcular variable , t h e  word “ h n s ’ d ’

appears in the “STORAGE CLASS” field of the cross-reference listing of those

variables declared by a DECLARE statement .

Feature 21 Number of implicitly declared variables (list_extract)

This feature may be useful for certain high-level programming languages

(e . g . ,  FORTRAN ) . However , since the Mu lt i cs “L/I  comp iler issues a warning

for all implicitly declared variables , and since we assume we are ex t rac t ing

f rom FL/I programs which compile with no warnings or errors , this feature was

not applicable to the current set of programs and thus it is currently set to

zero .

Feature 22 Number of explicitly declared variables (list_extract)

A counter is incremented each time an entry is found in the “IDENTIFIER”

field of the “NAMES DECLARED BY DECLARE STATEMENT ” section of the cross-

reference listing. Since all Multics FL/I programs must have all their

variables declared , this feature will be identical to feature 8.

Feature 23 Number of I/O statements (parse )

An attempt is made here to estimate the amount of I/O activity for each

source text . Because of the unorthodox nature of Multics virtual memory and
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~!ultics FL/ I  I / C m , severe constraints were p laced on what could be measured

easily . Consequently, this index represents only I/O activity expressed in

PL/I I/O statements, and Multics I/O to the user terminal.

The measure was derived by summing the number of instances of PL/I I/O

statements and Multics “ioa ” calls.

Applying this measure to IBM FL/I , or any other implementation in which

FL/I I/O is used , would result in a comprehensive indicator of I/O activity.

Feature 2’-4 Sumrber- of external calls (list_extract)

If in the “DATA TYPE” field of the cross-reference listing the word

“ en t ry ” am -ears , we know that this variable is an external subroutine. If

this is the case, the word “ref” is then searched for, and a counter is

incremented for each reference to the subroutine .

Feature ~5 Number of external procedures used (list_extract)

A co-unte~- i-~ incremented each time a new entry appears in the “IDENTIFIEP”

field and the word “entry ’ appears in the “DATA TYPE” field of the cross-

ref ex’ence listing.

Feature 26 Average number of forn,a l parameters in procedures (lisn t extract )

- _ _

~~~~~~~~~~~
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This feature is the average number of aarameters describe— i in the

declaration of the subroutine. It is calculated as the total number of

formal parameters divided by the number of procedures used. The number of

procedures used comes from feature number 25 . The total numlf r of formal

parameters is extracted as follows :

1. It we have a new entry in the “IDENTIFIER” field and the word

“entry” appears in the “DATA TYPE” field of the cross-reference

listing, then continue ; otherwise stom .

2. Search in the “ATTRIBUTES AND RE FEFE N ~ E S” f ield for the word

“dcl” . The number af ter  the word “dcl” is the line number where

this  subroutine was declared .

3. Start scanning the statement containing the declaration un t i l  the

word “entry” is found . The information a f te r  the word “entry”

formally describes the parameter list.

4.  Ini t ia l ly increment the counter by one , which  assumes at least one

formal parameter .

5. Scan the remainder of the string unti l  a “
; “ is encountered and

increment the counter each time a “
,
“ is located.
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~ - - a t - i r k  2 7  Average number of actual parameters in call statements

(list extract)

T h i s  f n ’ a t ~~ ’e is t }-
~ ’ ~t ve r I ,’,e n um b er  of parameters described in the  f i r st

-n a i l  to- - t n ;u~ mu ~n t i n e . I t  is calcula ted as the to ta l  number of r~r t ~~~~l ~—ara-

.— ,~t er s  used in ~Le I~ ’n ; c a ll  to ‘s -uh m - eu t ines  d iv ided  b y the number o f  ex ternal

~nr es used . The ms -f t -i ’  of ext ~ -r ’r 11 procedures used comes f rom. featur e

n - .’ b - n -  .~~~~~ . ‘ ‘ f e t o t a l  numb er  of actual  -aram eter s  used in th e  first call to

subr -
~~~ ~:~es is ‘x t r  i- t e  as fo l l ows :

I .  I f  we have a new entry in the “I N T I F I E ~~” f i e ld  and the word

a ,  n - - e a r s  in t h e  “D ATA TYPE ’ fie ld  of t he  cross-reference

~in t i n , ’ , t h e m -  c o r n t i m n ’ o ’;  at tn -e r w i n -  stop .

2 .  Search in t h e  “ATTPIB~’TES A N D  ~~~ ~~~ N C E h ”  field for the word

‘ :-e t ’ . The numnl er a f t e r  the word “ref ’ is th e  s tat emn ent numb er  in

~1, icn .  th e  f i r s t  n -n a i l  to th i s  subroutine is made.

~~. We ~~~‘ s~~- -e a t  least or .e a t  n i l  parameter , so in -n - n en’ient t~ c o u n t e r .

. . S~na:. tht s at i ’ment  which contains th e  f i r s t  call u n t i l  a “ ; “ is

fo u n d  and u n  : c n n e m n t  the co-inter -  each t i m e  a “ , “ is found.

Feature 28 Nu mb er  of comp lex  F s t a t emen t s  ( p a r s e )



Given the syntax:

if < expr > then <Si > else < S2>

if either the Si clause or the S2 clause is compound ( t h a t  is , IF , DO , o r -

BEGI N ) th en that clause is considered complex.

This feature is the total number of such complex clauses occurring in a

single source text.

Feature 29 Number of global variables (list_extract)

A counter is incremented each time a new entry appears in the “IDENTIFIER ’

field and the word “external” appears in the “STORAGE CLASS” field of the

cross-reference listing.

Feature 30 Av.- -r -at ~-’ number of ea c h  kind of I/O statement (parse)

This feature measures the mean number of each k ind of I/O statement in

the source code . The possible kinds of I/O statements considered are:

get

put

read

write

3-30

-v - - -- - ‘-  -,.‘ —- - — -



readlist

ioa

Due to the extensive use of M u l t - i c s  I /O through pointers in the data

base , the value of t h i s  feature  was not expected to be como t -letel’ -,’ accurate .

However , in a general FL/ I  environment , th i s  measure could be very in format ive .

Feature 31 Average length of I/O list (parse )

The mean number of primitive elements in each I/O atatement. I/O

statements examined were:

read

readlist

write

get

put

I oa

Feature ~2 Number of arrays (list_extract)

A counter is incremented each time a new entry is found in the “IDENTIFIER”

f l e l n - I  and the word “array” is found in the “ATTRIBUTES AND RF.FERFNCES” field

of the crors-reference listing.
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Feature 33 Total number of dimensions of arrays (l is t_ext ract )

This feature is a sum of the number of dimensions for each array. The

number of dimensions for each array is calculated as follows:

1. If we have a new entry in the “IDENTIFIER” field and the word

“array” appears in the “ATTRIBUTES AND REFERENCES” field of the

cross-reference listing , then continue ; otherwise stop .

2. Search in the “ATTRIBUTES AND REFERENCES” field for the word “dcl” .

The number af ter  the word “dcl” is the statement number where this

array was declared.

3. We assume at least one dimension , so increment the counter.

4. In the declaration , scan until  the variable is found.

5. Scan the statement unti l  a “) “  is found and increment the counter

each time a “ , “ is found .

Feature 34 Number of ALLOCATE statements (parse )

A count is maintained , for each source t e x t , of the  number of F L / I

ALLOCATE statements.
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heat-cr’e ~5 Number of BEGIN statements (parse )

A count is maintained , t m -  e t h  sonim- - - t -x t , of th ’ - numb er ’ of FL / I hhhIN

‘~tatt’T~ents- .

Feature 3€- Number of ( ‘ALL statements ( parse )

A co~.nt is maintained * t or’ e- nch ‘s ur- ’e t e Xt  , ot the  m r n i n n i  - ‘ r on 0-o r sr

invoked through the FL/I CALL mechanism.

feature 37 Number of DECLARE statements (parse)

A count is maintained for each source text of the  number of ‘~declare t’ or

“d cl ’ statements.

Feature 38 Number of DO statements (parse )

A count is maintained , for each source text , of the n u m f e r  o~ FL/ DC

s ta tements .

Feature 3~ Number of DO WH IL E st a t ements  (p a r se )

A cour.t is maintained , for each source text , of the numb er  n —C PL’ -

statements con taining a WHILE clause.
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Feature 40 Number of END statements (parse)

A count is maintained , for each source text, of the number of FL/I END

statements. Note that an END statement is always paired with a “start block

bracket ” such as DO , BEGIN.

Feat ure 41 Number of labels ( parse )

A count is maintained , for each source text , of the number of labelled

statements.

Feature 42 Number of GET statements (parse)

A count is maintained , for each source text , of the number of PL/I  GET

statements.

Feature 43 Number of GOTO statements (parse)

A count is maintained , for each source text , of the number of FL/I GOTO

statements.

Feature 44 Number of IF statements (parse)

A coun t is maintained , for each source text , of the number of FL/I IF

statements.
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Feature -~5 Number of ON cond i t ion  declarations (parse )

A sonnnt is mainta ined , for each source text , of the number of FL/ I  ON

condi t ion blockn ; w h i c h  were declared.

Feature 14t Number of procedure declarations Cm -a r  ‘)

A count is m a i n t a i n e d , for each source text , of the  number of eX ~~~- r r

i- c-ut it ‘n - ‘mo e-i .

Feature ‘-~7 Number of PUT statements (parse)

A count in-n maintained , for each source text , of the number of PL/I P 1JT

s t a t e m en t s .

De-3ture -.8 Number of READ statements (parse)

A count is maintained , for each source text , of the nunnheo of FL/ I  ?FAD

st a te o  e n t, .

Deature - t3  Nsmh er  of RETURN s ta tements  (pa r se)

A count is mair;tained , for each source text , of the number  cY FL/ I

i ’ JRN statements.

——-—- ~~~~~ - ‘ - - 
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Feature 50 Number of -fVEF D statements (parse)

A count is main ta ined , for each source text , of the number of FL/ I

RI:V~ fT  s ta tements .

Feature 51 Number of STOP statements (parse)

A count is maintained , for each source text , of the number of FL/ I  STOP

s ta tements .

Feature 52 Number or WRITE statements ( parse)

A count is maintained , for each source text , of the number of FL/ I  WR TT F

s ta tements .

An executive rout ine  was written to go through the e nt ir e  data base of

PL/ I  programs and extract  the features from the f i r s t  comp ilable version of

each program , - - r r - t t i n g  f- ’ - t ? , ’ -~- fH- ’ r- .’- m - able by M u l t i c s / O L P A R S .  Bes

m er f o r m i ng  t h is  func t ion , the executive also €xtracts two v m n iables  w h i s h  am”-

j r -ed is e s t i m i n e s  of f ’ - ye1~ - tt - I 1 5 t y  of n - r n ’ r 

Var i~~ - 1e 1 Development time

This is an approximat ion to the development time of each of the programs .

Each copy of the program in each directory represents a d i f f e r e n t  month which



I is  pm - r~ i ’m n wi: 1~’bum h cc 1 and t e s ted . T h i s  v n r - i i b l e  is a count of the nnjtnf ’-r

o~ -f j~ t - - t - -  u t  m m  ths t ha t  t h i - - ?‘o~’ y - imfl war; - l -I - u ~~y - - i am’ t e n; t

Var ’  t a b l e  2 t4 n i n i a ’r of c i ; , t t t C t ’ - :

T n,in n van l ib l e  i- ~- n r ’ - - : i ’n t s  t he  m s m m h ’ r  of l i n e s  of n-ode that h i v -  

- h o ; G ’ t , i n - i - t i , cn ’ - 1 - l o t - i in a -1 - 0gm - mm - n t n -- t i n g from tb - f i n - - t - ’ : 1 - t i -  l e

v e r ’ n n - i . r m i  ~- t  t h e  n - r e ’ m - i m  th t ’ i : J ~’ 1 , t }i~ f i n a l ve r sion  sf the  c - p  r im . h - im p ’ - ;

co u m d  cc - ’li m’ when r’e~’ n - ,Irn ;j ‘ c i t  i c a t i o r m s change or when a t - o( ’r - nm: n: ii r np ~-r’r nm

is det e- - t e d  ai :1 then I i x e l .  Even theuph both of th en - ;i- t ’-/ i -  - ~ t - -h -i rmg ’-s 

h m v ’ been - c ou r t i n g ,  the  OLPARS system be ing  e v a l uat e - I  is a well-ci t ~med

sv n - - t -’m (see [ 3 ])  and thus  mon - : t changes were due to programming -‘i-r an L i t ’ s

c-f - -smoents and leading b lanks  are ignored in c a l c u l a t i n g  the  number  of

- h m r n g . - n ; . A S t  F - i  ~ ‘ht ASCII  comparison (u s i n g  M u l t i c s  rout iso “ - ‘pa ” )  w on ma de

ot the i n i t ia l  and f i n a l v e r - n i o n  of a program. The f inal  r e s u l t  of t h i s

was -;tare:1 itt a f i l e .  T h i s  f i l e  was then scanned to count  t h e

mi c a  of c h a m p e .

3.4. :1NbLi ~: -FAN DAB ILITY

‘ i ’ - - i m ni f r’t~i mm t -is;’’’o n of program q u t i  i t’ , is under’nn tandabi lin y or risychol . g—

ical complexity, the ease with which a programmer (other than the original

,r ) c - i n n  n - - i  I a program and und .m r - - : t,-ind its opera t l o t . A l t  h o m i p h independent

A r t ] - r o r is limp cf ~ rop r am is ro t a necessary condition for re ii i i  - le t r opI -  mmmi

-x e  a ’ ion , t h amount  of c o gn i t i v e  ef for’ ’ rie 1 uired to und- ’r ; t m n I  a program

_ _-
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- -atm directly m i t  luence the cost of software d.’vo l opment , sof tware  maint~-’nance,

a n t  n - - i  t w i r ’ - m o l i t  i - m t  ion .

This  - n - m t i o t ;  c f  the  s t u - l y was an r m t t r : t n n p t  to der - !’ji ’ t w  van - m i - i - -n- w h i c h

“ - i : ! -  t h e  c - n m  ‘ ‘ ;  I n i - m i  c l - m r i t ,  of the pr’apr- mm:: in m he 1 i t lrm n-;.n- t h r - -~~ p l

p ay -  holog  1 s- -a l i n g  t h n  in -~u m ’ s .  In  a p sy ch o lop i c - m I  r - - n o - -~ r- -h - m r a o i g m , one

of t b -  m n : ’  S i n ’ ’ - t - c ’ hr m i ques fo r  g e n e r a t i n g  an e v al s i t lye  a- --a l m ~ (i. ’ . a

i t i r e)  i -  : - i ~ lv to as-F the  subi -r I s to r a t e  th e  i’~~1 -v - im n t m m rsmet r along

a n u m e r i c  - - , m ~ e :  e .p .  from 1 to 10 [12] .  Over wide  ranges of c o nt e x t , exper-

is -n - m n ’  ii - le m m n ts , r i f l d  n i b  5 - - --- t n opu l a ti o n s , r a t i n g  procedures  have h ’ m - n  found

- h’ - t e r m . im - k a b l y  re l iable, both in  the  a b i l i t y  of i n d i v i - i i j - m l  subj ec t s  to

l i c a t - -  t h e  in own r a t ings  and in the  genera l agreement  of r a t i n g s  across

‘ s- c- : ’5.~ Tn t h i n -  s tud y ,  subjects  w i - r e  asked to r a t i -  t he  u n d e r s t a n d a b i l i t y

of a se~ - f : r - - -a’ t m ms on a n ine -po in t  scale.

T b -  second f e a t u r e  was more per for rn ance-or i -n t o d .  I f  the n r c -pra ms in  th t-

t i  ba n -nc- V t r ’~ in t he i r  u n d e r s t - m n i d - m l  i l i t y ,  t h e n  t h e  t ime i t  t akes  a ropt’an’nm:em

- c — i  I and s i - l a m , t i m id a program should be d i  t -e - - r l y r e l al  ed to t b  - n - - n - - c - ’- ‘ s

c.ni m r ty. T h u s -  r o i l i n g  l a t ency  ( i . e . read ing  t i m e ) w i l l  be an m l  ~-.ndent

mm ;” i s n i r - ’ ’ ot  n - a - n -  I ; ’ -  r r m n - i n x i t y .  In  a d d i t i o n , as a check on t b . - va1~ lit’; a t

‘h a  r n - i l  I f l i ’  or to t - - , the  two measures shou ld  be - i t  l e a s t  m o d e r ar - - l’: corn- ’ - —

i t t .  A f t e r  a l l , the  l a tenc i e s  and the  r a t i np , s ar ’ Iw - 1 i , t  ‘ r n - t n t  : c - - s e  m i t t ’ - ” -

for mea sn ;r - i w’ a common construct , program u n d e r s t a r i d a h i l i t , - .

~“ C e r t a i n l y  ther ’e are i n t e r - s u b j e c t  d i f f e r en ces  in  t b  s a m ’  of any ~p a r tic u lar
rat i r ; p scale.  Some s u b j e c t s  t end  to use the  upper end of a scale f o r -
every judgmen t  w h i l e  o the r  s u b j e c t s  tend  to use the  lower end . b u t  even
when the  mean r a t in g s  are very d i f f e r e n t , t b ’  p a t t e r n  of r ’ .-n -p onn -nn - ’s it’
very s i m i la r :  t ’~p ica 1  i n t e r — s u b j e c t  cor r e l at i o n s  may I -  w e l l  over- ,
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-~ out: :

‘ l w - n t - ,- ‘ ‘m I - J o ’; - - n;  o r l’ , 1 n . ‘r’n Ar m - i  l y n n i - ari d f’ - :r . p t i t  i o u  ~~~ - -r i t  -s r n - n - v t

- i s ,  ,ubi . - - -n m- ; t o r  t i n n  stud y a n I  w i - n - i - n - i l - I  for tra in pat ’tici 1- m t i - - nn . (h’ - ’

. - -
~ ~~ 3. 5 . ~~. fot~ d -t a i i s I t in ’ - t - - mynn ’ - n t pr- a lu.’’ - . )  The r tl tm :,, -ns w ’-r- ” - i ll

- n  i ’ m - - I  ‘m ats-mm n’ ; : t i n . - m m m i  ( f ’ t l l — r  I t t ’ - -  n ; ii v al ’ -mn t ) p r - no r i r m - r ’ ; i m ’ ‘ - x ; - ° i l —

- n -  “ of t i -  511 ’ - Inn w i - ’ ‘m . 25 y E- mm - : , wi t h  .i - m i n i m u m  or (-ri ’ ‘y’ i ’ O I ’  (fill— c i nn - ’-

- - s l y - i  - 
‘ :,t ) f - ,‘ t - a t n m i m n -  e x t -  r i - n c  - . in i l l  t i o n , - ‘ -  var: pc:;:;’ r-sed I t .  D. ‘ s;

i ’. ’ , M .S. ‘ S ; - i m m - l  s i x , H.S. ‘ s i n  m i t h o m a t ics  , r -  m n - j , m i t e r  - - i r - r m c e  , - - r r-.-

a ‘ ‘ n -  . T i n u : :  ‘very sit !- p t  i , ~~l i t  b i ,ci c ’n t a c- i d - m i n / w c - r - k  . - x ; - -- r - i e n c . - ’  i n n  r c a - i t

t n - : n - n i ’  i n ; ’ j i  ‘ n it; i-  ‘ - v - i l - i - I l t b —  i t t - I  s m ’ — : t - m n  I d - i l i t y  of I

3.-’ . 2.  i n n s ,

‘I’; : - ina l i t  of 1-i - - - F L / I  n m - - p r - -m n : :  var-l ed c e r n s i - J e r ’ i l - l y  in sin :-- . Fon

t b -  - i n n m j ’ ,’ ; : s  of ; - - ‘, -h c  lr ,’ i n ’ , ml  compi ’x i r ’ .’ , programs of t r i v i a l  1 - r n p t h  ( I i -’ -s

‘ m m m n 2m ~ l i n e s ) - i ’ w - - I l  i ;  ‘ x s m - e c i v -  I -n , ’ n l ;  ( s - v - n - - t ha t  ~ f - - u - n - )  w ’ - m ’ c - r n

The r em  i i n i m p  155 n - n - n - n - : -  t i l l  o v e r - en - f  a w i - i ’ -’ range of - i ze s , ‘ ‘ ‘ - t  n - h a i r

in - I - r a t  ~m - : - ~ l -  I I ’ ’ , ’ c o u l d  h” r i - I t  t i - ,- m ’ : ’n e t t n-m~~d w i t h  a m i n i m a l , i !m m l t ; t o m i m C O f l —

van i-un - - ’ - n - - a the n - w I n  5cc r s . F - - n -  e m - f  o f I ~, ‘ - p -rup,r’dma , 15- ’ jut her- w i n  is

i’ . ’ m a n  - i~~’- m q ua :  t~~~~- :, w h ’ -  - ‘ - i n  — w ’ - n -  w o u l d  r ’ - q i i mo- ’ an m i n d  tanding n - f  the

m r - n - ,’ “ a a1 • ‘n i t  - -it . Tb- ’:, ’ ’ qimas I i c - t n t .  ( a l on g  w i t  ii a m o net a r y  i n  -ent  I y e )  w o n -e

s- .n 1  to i t  i r e  I t o ’ t h e  su b l o ct s  - - m n ” - :  i i  j ’
~’ r” ’od every I - p m - m m ‘ - m ; c u m m t ’ n ” - d .

~r I ’ m -  no r- t b - i t  tw o w ’ - ’ 1 - : .  As - m f I - - I  - - r ud y showed t h a t  only -~~ ~~ 14 of

I t  was o r - ’ ’  is -n o b l e  t o  run  1 in i ’ s i l . 5 i ’ - t s f o r  m o re  i t  - m u one hour per day
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t b ’  programs cou ld  be read in one hour , it was neces :a-mr ”j  to g ive each s u b j e c t

a subset of the ~ rogr arns to m m d .  The programs were divid ed into four groups

of a~’;-r x i m i s - e l y equa l si ,- - on the  b a s i n ;  of program l e n g t h .  For each s u b j e c t ,

a sat 01 programs was randoml y m n - e l e c t e d  from the four s ize  groups according

to the f o l l o w i ng  c o n s t r a i n t s :  1) Each size group was (app rox ima te ly ) equal ly

represented ; 2) Each subject would see 31 programs ; 3) Each program would be

:;ia’ r n by four subjects ; and 1 4 )  No two subjec ts  would see the t ’aimme set of pro-

grams . To in<’re,mn’ i: the reliabili~y of the two measures , it was decided that

. - - m : h program would  b read by four  subjec ts  and the mean values of the

r a t i n g s  and l a tenc ies  would c o n s t i t u ts  the raw data .

A loose-leaf  notebook was assembled to aid in the s tudy  of the programs .

The notebook con tained verbal descri ptions of every subroutine called by the

I t - o p r a m s  and an exp lanat ion  of the parameters of the cal l ing aequenc” . Tl~-

notebook also contained descri ptions of all files used by the pm --grams . The

stit routinci arid file n -l ’n n - ;- :r iptions were organized individuall y to facilita te

t i n ’ -  i r  use by t h e  programmers .

As — in a d d i t i o n a l  a id  to the sub jec ts , each program l i : ; J i n g  had a program

ii ’n- :cri p r i o n  a t t ached  to i t .  This d e s c r ip t i o n  con ta ined  a verbal exp l m t m i t i o n

of the  program ’s function (at a conceptua l l e v e l)  as wel l  as l i s t s  of th .~

files and subroutines used and their parameters . It was ne- -essary to include

this informa t ion as some of the programs already contained similar f~-:~;’n’i p—

t ions as part of their comments. The descriptions gave only information

about the global properties of the programs : e.g. the algorithm use-f . None

3_~~p



- f  t b .  t ’ - ,s - r i :  t i - ~n rn - i v . -  it ; ’; c l i i i ’ : - ;  f t b ’  f l o w  ot t h e  program - - i n  ~~‘t - r -  5 :-c r i-

t i c ’  f - a i m - -s wh i c h  m m - f t m t  l uenc ’’  n h - -  t - ’ ’ y ’ t o r ’ t t n n - i r m r ’ - of l ; ~ -

I . ‘~~ 3 . a -  n i t - --

0 m m . ’ w e ’~ ‘ ‘ I o t a -  i i i ’ -  ; ; t i r - t  of t i e  -x p ’ ’r’ i m - - r n t , l i i i -  s u h j - - -  ls Ot  t , ’t id , ’cI -m

P h -  I ; ‘ c ’ f r - ’ sb ’a-  semi n a n .  i c - i t  1 m m - n - :  of FL/ I -i n - I  of the N i u l  t i - : : -; n _ n  ‘ - n - a t  I : ; ’  n- ‘,‘ n -, r ‘n -rn

s - - n  - ‘ v i e w - - i  ‘o i n : :u r ’ - that ‘‘vi m - yr - n c - was f a m i l i a r  with thi’ l- j n n ~’;;-~p - - a ’;n:r - -n>: ,

1/0 n - n - i ’ d : i -  ~t I - m i : , ‘‘ I C .  - n i t n r n n - m n ’ y  sheets of t he  f i t - i r - ’n - s  were g i v e n  to s- h- -

I a , i s were  a - i t s - I - I C  t n - a p r- - i t s- . The purpose was to minimiz e dtiv dif l 1—

u n m i t  l o s  due to i i ’ - l a n g u a g e  or the  - n -~ ’ - r - m t i n g  sys tem .

hsh~ ’ n - - t s  were run either indivi duall y or in pairs. They began by r- . ’ - n t i n p

w -~ m - - i n - ° ’  - - - ‘ i n  - t n - O c t  ions. The i n s t r u c t  ions s t a ted  that they were t o  t ’ E ’  i - I

- n ,  ‘ : , r - n - ’p, ran m ’  a t i m , ’ . u n t i l  t he ’,’ unders tood i t  s u f f i c ie nt l y  to  n - i t s -  - i t ’  j ’

i nto i n - n  l et’ hi gh—leve l i a r m p u l p ’ ’ . (A copy of the  i m n s t r u  ‘ ions t o  h i ’  - : u l - ~~ectn --

s contai n ’ ’- I i n  Appendix A .) ‘r im ’ - suh jecr - were then given r i -  n-i ’ -

-~jl r c m i l i n ’  - iti-1 i~~1e lers - cm r i~ -t  ions , , l t i  I w - n - n- - i i  l aw - - I  t i -  axamit i .’ t ha t ;  f - - n a I ’  a

m i n u t ” - ’~-

Wfs-’n -i - : ; i b i e ’ t  i n d i r - i t  ad he was ra m Iy , he wa’ given - 1 program l i s t  i t ; ,-

a m - I  - or r ”  n - - r i  n g  d ’scri pt ion r ’ h o ’ n e m i  r andomly  f rom h i s  a c t  of 31 pi’ c-g - - on - s .

S imt u l t --m nm , -aisl y, a - : s - cn - ;w it ch was a t  i t  t i c ! . When i~~- i nn - l i i - i t ’ ’ : 1  t i i , i i  he was

I j u l  t i - - I  ~ t i t ~I , ‘i rig t h - -  ~ r --n - ’gr -a m , t b ’  watch w i n : i t O t f c ’ I , i t n d  t h e  t ime m ’ ’-’cor ie- :  to

t hc’ n e i l - c ’: i , i s ’ r n ’l . I f  t f m i -  n u t - f e r - f  was ~ t i 1 l  S t i ;  l y i n g  - m p rogram a f t ’ - m -  25

t ’ j T) ;~~~~~- , he W ri t ,  c : r , n ~~ at , an d 25 f l i I f l U t ( - ’ n - m  w , m n : ’ ’ i t - m t i -  I ’ ’ - l i t - - : i - ’y .  - n i H ’ - - t s

- - ‘ - 

‘~-4 I  

- 
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were t - : c l - 1 that if they had a question concerning the “nyntax of Pta/I , the watch

w ild hi’ stopped while the question was answered. We wer e concern ed only

w i t h  d i f f e r e n t i a l  pe r fo rmance  re lat ive to the programs in this n ; l t - i y ,  not in

p e c u l i - i r i n i e s  - - r -  d i t f i c ul t i e s  in the  language  i t s e l f .

Af t er- - the i mtency was recorded , the s u b ject  was asked to rate  the  pro-

pr’-im on a scale from one to nine , where a r a t ing  of one implied a t r i v i a l

: - n m i g r - -:m m and a r a t ing  of n ine , an incomprehensible one . The s u bj e c t , was also

asked to  ra te  the degree of user interaction in the  program and whethe r the

program was m a i n l y  numeric or non-numeric in nature .~

F i n a l l y,  the s ubj - ’ct  was g iven a ques t ion  concerning the operat ion of

t i , .’ program. T I  the quest ion was answered correc t ly ,  25~ was r~ ”- d i t e - ’i to the

i i - j e c t .  I f  t he  answer was incorrect , lOi~m was subtracted from his  account .

We were t o t  interested in the answers per Se. This procedure was used to

mai ntain motivat ion in the subjects , for a subject’s answer had to be correct

in or -Ion- to produce - i monet-mt-v gain , and he needed t o  unders tand  the  program

in or -i ’-r  to answer the question correctly.

Af ~~~r ‘he  - 1u ~- - t i-o n w a n :  answered , the process was repeated with i t i - a t h e r

randomly select’:’ I pro gram.  Each sub jec t  saw three programs per day for n ine

days .  On the n i n t h  c f - m ’ ~~, he saw four programs . A typ i c a l  session lasted less

The subjeérs were -isked to e v a l u a t e  these two program cI-ma: :ification
va r i ab le s  s ince  i t  was f e l t  tha t  there might  be an i n t e rac t ion  between
the t ” I ” of program and th e  spec i f i c  f e at u r e s r’cn]at~ d t - -  rel i ib il itv.
These c lass i f i ca t ions  ref lect  global characterist ics — f the programs
and thus could t m i , t  be au t o m a t i c a l l y  ex t rac ted  a t  t h i s  t ime .
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than one hour , and the ten sessions were spread over three weeks. Afte r t h e

fina l session , a subjei:’t was given t h ~ money due him .

The re:,ultn; i - f  thi s study produ’ € 1  t h i ’  f o l l o w i ng  information :

Feature 53 Amount of numerical processing

The value was the mean rating across subjects ad the relative amount of

numeric p rocessing . A rating of 1 indicated a numeric routine and 2 indicated

a non-numeric routine .

Feature 53 Amount of user interaction

The mean rating of user I/O across subjects was taken as a global meas ure

of interaction. A rating of 1 indicated no user interaction; 2, us er outpu t

provided; and 3, the program was interactive .

Variable 3 Latency

The latency was tbm- t ime duration from the moment a subject received -i

program listing until he indicated he was finished reading the program . (See

;c ’ -- t iofl 3.4 .4 . for a furtb ’-r discussion of this variable.)

Variable 4 Understandability rating



The understandability of a program was defined as the mean rating g iven

by the subjects who read the program .

:3.4.4. Var iable Generation

In op - Icr  for the ratings and latencies to be considered measures of the

mi n- lt ’n’ nn - tandability of the programs , it is important to show that the subjects

1 h-l , in fac t , understand the operation of the programs they read , The number

c-I correct answers to the questions was collapsed across the programs to

arrive at a measure of the performance level of the subjects. Overall , the

questions were answered correctly 94% of the time . There were no systematic

patterns to the errors; they appeared randomly distributed over programs and

subjects. Moreover , it appeared that a portion of the errors were due to

ambi guous questions and subject carelessness (e.g. in locating a particular

el “ m s - e t m t  of an array). Thus overall it appeared that subjects did understand

~he programs which they read .

The understandability ratings for each program were collapsed across the

to ur subjects who read it to arrive at a mean understandability rating for

that program . Similarly , mean est imates of degree of user interact ion and - n - f

numeric/non-numeric processing were obtained for each program . These three

variables were added to the list of physical features for these programs.

Latency or reaction-time data tend to be highly skewed in a positive

direr  n on . A standard procedure for normalizing such time measurements is to

transform the data by replacing the latencies with their common logarithms
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I 7 , J~J . -‘c f  t i  t t : ’ ’y ware  t r m n s i r ’rn t ’d , t i n e  l i t - i  w ’- r ’ ’  cnliap’ :r’  I - i - -ross t h e

- ~~‘ - - i n  -p  vi i t  - i meat i  ( 1- ig, ) 1 at  ‘ - i i -  y f- -n’ ‘‘ - m - in  -n -o p n - i l :; . T h i s  v - i n  - - m i _ I  ‘‘ w i

i i  m c )  m l -  I . - - I ¶ ‘ I ; ’ ’ n ; , -  of -b y ’ , i - - m i i - n ’ -  -g, r atn i - - i  t on-es .

I t  w , m - claim ed i t  the be g i n n i n g  of section 3.4. that hiss -h t i - ’ ;iti ;b - r—

s’ m n m l - i l j t ’ ;  n i t  i t m g ’ :  and t h e  l i t a n ies were measur ing  a common c o n i s t r - - ~n - t

in m i g ’ . ’ be - i i  l i - _ i  t i i c  - ‘ .‘,chol og,ical - ‘ r n~ - l ex i t y  of th in ~-rogrs1ms . I f  t h e y

ti u t I , w. ’ r - ’ i - u n - i  t i g  f l u ’ :, it n ’ ’ - - - - n a t r ’u c t  in d i f f e r e n t  ways , t h e n  tb ’:  two m” as ’ir ’e ;n

a ,  I H -  r e i i t e - l .  The - - ar t” l a t i o t i  b e t w t ’ e t n  t h e  u n d e r s t a n da b i l i t y  r a t i n g s  and

j - , - i i ’ -
~~~~~

- 
~~~-o— ~ fl . T t - ~ t i s , t b , -  two va r iab les  wer e h igh l y re lat ed.

H, i . ‘ ‘ en ;  w h ’ - n  t h e  ‘ - t n ’ - - t of t he  size — - f  the  programs was :- - m n - t i - ~lled out

1. .- . t i  el i t  ty r e m - v - I ) , t h e  i r r u ’ l , j t i ; i n i  between t i c -  r a t i n g s  - i n - I  log

r n -  i . ~ ) . c: ( i n - - i ’ , e-ction 4.3.3.).

3—m ~5 

n~~~~~~ 
.



SECTION I i

DATA ANAI,YSIS

4.1. OLPARS n-VE PVIF,W

This section will provide a brief description of the On-Line Pattern

t)rlaiySis and Recognition System (OLPARS) as implemented under Multics on

RADC ’s HIS 6180 computer. Elements of the pattern recognition problem and a

functional overview of the Multics OLPARS Operating System will be included.

hin d - il - i s is is on the practical use of the system to solve a pattern recognitior;

probl em. ( For a more detail ed stud y ,  sea “Multics OLPARS Opera t ing  Sys tem ,”

RADC-TR-76- 27l.) To test the usefulness of OLPARS in examining program data ,

a pa ttern recogni t ion probl em was designed to try to classif y programmers

mere ly by t mm ; it ug the structural features of each programme r’s program s.

A~ t E’ nidi x D presents the details of this procedure .

T)~c- pattern r’eso;’nitHirn problem is described as the recognition of the

stat ’:- of an environment based on L measurements or features extracted from

~~~ environmen t. Th us, the pattern recognition problem is composed of (1)

f e - m t u r - ’ n -  extraction , that is , the definition of the measurements , and ( 2 )

pattern ct,m: ;n;ification . The objective in selecting features is to provide a

c t  of measurements which yield irnlormatio n which will aid in discriminating

between the various environmental states. The pattern classification problem

requires that we des ign the recognition logic , which classifies the state of

the environment using t h e  previously defined L features.
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The concept of a vector  space is fundamen ta l  to all  of t h e  problems

discussed here . The features (measurements ) define the basis of the space;

an objec t  or an event is represented as a vector in that spice . Feature

ext r’ lction involves defin ing the representation space , and j-- ~ttern classifi-

cation involves defining the partitionment of this space into regions associ-

,ited with each of the :t~ites (or’ classes ) of the environment. In order to

solve -~ pattern classification problem , statistical sample vectors from each

state (or class ) must be collected and analyzed to yield a satisfactory

classi f ication logic.

The pattern analysis problem differs from the pattern classification

problem in that the states (or classes) of the environment are a priori

unknown to the researcher. The data comprise a set of L-dimensiona l vectors

which must be analyzed to determine the natural or inherent classes contair;e~

in the vector data . The detection and identification of a substructure of

cl u’ ters (sample vectors which cl’nster together in the vector space) is the

solution to this problem .

The vec tor data structure is represented within OLPARS as a hierarchical

‘ret’ ‘4h-’r” each node corresponds to a list of vectors . Part i t ic - n n n n- -n t of :r

lis t of vectors (node) is represented by branches to lower-order nodes

emana ting from the node corresponding to ti n’ - ’ original list , wi th each subno do

being associa t”d with a sub-list.

OLPARS facili ties for solving problems of pattern analysis jt:d c l r ; — i f  1-

cat ion  consist of t h e  following types of routin e:- :
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1. Data Input , Storage and Ou tpu t

Dat ,i input from cards , tape and other Multi -a m- n- files.

Permanent storage facilities in which OLPARS data may be m ai r t - i~ ned

either f o r  the exclusive access of a given user (exclusive user storrmp , ’) - r

for common access by a number of analysts (common user storage). Data tr ’ - ’ -s

may be output to either type of storage area , retrieved , and dele ted . Li :‘:

of the data ty -i --n ’:- in each area may be obtained by user command. In add iti- - t ,

OLPARS logic and projection vectors may be stored , retrieved and deleted f rom

exclusive user storage , and lists of those data may be obtained seraritely.

Programs for listing and deleting data irees from current storage are

available. In addition , data trees within the current storage area nay be

modi f i ed  by adding da ta classes from other data trees, by combin ing  cl asses

wi thin the data tree , by delet ing any da ta class or da ta class subs truc ture ,

or by removing individual data vectors from the data set. A na-Ia substructure

may be added to the current data tree via the structure analysis module . Any

data tr ” e or data class name may be changed , and a display of the current -Ia t~u

tree is immediatc’ly available. Finally, a new tree may be created fr ’-~r n da ta
- 

classes existing in avai lable  da ta trees , or by extracting a percent-igi’ of

data vector’:; from an exi:-;ting data tree. The purpose of this fina l option is

to provide a facility for the creation of randomly assigned design and test

Sets for’ t h e  design and independent testing of classification logic.

Ii
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Listings and data manipul ations were very useful in doing preliminary

analysis of the programmer classification problem (see Appendix D).

Data trees from current data storage may be permanent ly  stored on

magnetic tape.

2. Data Display - Projection Planes and Display Formats

OLPARS provides data disp lay in a 2-sp ice scatter or cluster format and

a 1-space histogram format. These displays may be viewed in several projec-

tion planes (coordinate , eigenvector , discriminant , and user-suppli- :d).

Facilities for user manipulation of these data projection displays include

printouts indexing specified points , modify ing  scale fac tors , seque ncing

appropriate data projections, storing projection vectors for later use ,

changing the data class composition of a display or highlighting specified

-Hm ta classes , and imp lementing partitions drawn via cursor on the display

terminal. For the programmer classification problem , displays were useful

in observing w i t h i n  class and between class scatter of ties- programmer data.

3. Measurement Evaluation

Measurement evaluation computations are also provided which measure the

discriminability of features. The measurements are then presented in rank

order- display format; manipulations available for these displays include

printout , rankings for selected classes , class pairs , or measurem--rnts , d i sp l ay

f t h e  distribution of data along a :;elected measurement in histogram form-it.
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and :n-t’ lection of a measurement subset far- inclusion within - i  data set of

reduced dimerisionality . Finall y,  a program to’ - f - c t - i  set  reduction is pro—

vi  de~l.

For programmer cl -m -oa ifi ca ti on , measurement evaluation was p r i n ’n a r i i’I u - n - a l

f i r  purposes of data  r educ t ion .

4. Data Tree Transformations

Three addit i on al opt ions are available f or crea tion of t ransformed da ta

s’rt:n- : tiornindization , eigenvector transformation , and linguistic transforma-

tion of individual measurements.

d i nce the programmer da ta had to be normalized prior to ana lys i s, these

- in ; f o r m a t i o n i s  were very usefu l .

5. dt r-ui- ture Analysis I n - tit i - n - ns and Projections

The creation of subnode structure in - i  I it.i tree (the n- s - r ust - a r -- analysis

function ) can be implemen ted via partition of a data projection disp l-iv or by

linguis tic statements base-i on a i r ’ i -n-i knowledge of the ranges and relation-

ships of ~I a t - m  distributions within and between d a t a  classes.

An ,iddit i~~r u , i 1  data p r o j e c t i o n  -I i ng -i a y is ava i l i b i n -  for the :: t ructur ’-

‘ 
analysis function i u ~ the form - i f  a nonlinear mapp ing al gori thm. This algo-

r i t h m  has been equi pped with a data set clon :t ’r-i t ig algorithtn : which  allows its
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un--i ’ on large data sets ch’sp ite the time and space limitations inherent i t  t he

m a i n t e n a n c e  of arrays related exponentially to data set size , w h i c h  ar e

required by this algorithm.

S i r s - c ’ no s t ruc tu re  anal ys is  was necessary for the  p r ogr - in im ’- - r  da ta , ar t  i-o t is

:l ’ ocr if - -il ,ibovc’ w a r ’  not used.

6. Classification Logic Design and Eva luation

OLPARS logic design facilities provide extensive mathematical/graphical

techni ques for allowing the user to tailor decision log ic desi gn to the

struc ture of the class da ta . In general , pattern classification is undertaken

following a pattern analysis conducted on each of the dat i classes for whi P

logic is to be desi gned. The purpose of this analysis i :- i to enoni r-- that each

Iot a d oor- is unimodal; that is , the vectors from each class are clustered in

one reg ion of the measurement space. Although not always require- I , the n- t n - i —

modality property is highly desirable in order to ensure an e f f - c t i v e  log ic

desi gn. In tiuo sc ’ cases where the class data are found to be mnultimodal , the

-ipproa-:f : dic tates that each mode be identified and the  sample vector’; corre-

si-o tu -l ing to each mode be grouped as a nameu subclass. Upon completion of t he

logic desi gn , the decision reg ion in the measur ement space corresponding to

each subclass can be reidentified with the original mul t imodal classer-.

Basic logic design operations fall into two categories :



a. Logic capable of completely classif y ing vectors within the reference

yr -a s p  of dat i c l i:;ses ( c o mp l e te  w i t h i n — g r o u p  log ic ) ; and

b. Log ic capable of identifying and partitioning comp? ately disjoint

data class groups (between group logic).

The full set of log ic design c a p a b i l i t i e s  in OLPARS were very useful

for purposes of - ata analysis and log ic design of the programmer data.

7. Complete Within-Group Logic

Nearest-mean-vector logic implementation provides -:opob lit in - s t - - n - class-

i t ication of -lata utilizing one of three metrics (Euclidean distance , weight-s--I

vector distance and Mahalanobis weighted distance). An unknowti v- -ctc: -r- , then ,

is assigned to the reference class for which the decision metric is minimized.

Fisher pairwise discriminant logic is constru cted by computing optima l

linear discriminants and thresholds to distinguish between every -air of

classes (subclasses) within a designated group .

Closed decision boundary logic creates an L-dimensional closed hyner--

region for each class of the selected data set. An unknown vector is assigned

a class if and only if it lies in the hyperregion associate- ! with s-hat

class and no other .

- i . -~~- - - - -~~~~ -- -



e~ Between-Group Log ic

D a t - i Projections. An obvious drawback t - - compu t in g, pa irwise di ‘inr - ir ; mi t - .

iS t i n - i -  ~ t ’ n t l , i i l y  large num ber of combinations. In mn --it problems - - f  int -r” - - ,t

- - t  u ; -  d oor- i ’s  (subclasses ) are stat ist Ii ally dir - ~- n - in t a nd  quit-- i-is i 1’.’
s- u - - it - nted from one in -- is - her. If tliem ;c’ disjoint class s t  - - -u -s - - i n b- H ’ - t , t i t

and logic can be designed to discriminate the groups , then the pair- wi - - -  dis—

C r -  i mindt ion need only be computed for the statistically overlapped classes

(subclasses) within the group . The OLPARS user will not ordinarily know a

priori how to group the classes (subclasses); therefore , op t ions are provided

t - - project the class (subclass) data onto one- or two-dimensional subspaces

and disp lay the results. If the user detects nonoverlapp ing groups i f  c l a u s e - m m -

( s u b c l a s s e s) , he can draw separa ting p iecewise lin ear boundaries on th’: dis-

- l i v .  These hr ;u r n d a r i e , may be stored wi th in  the sys tem as p iecewise linear

h ’, c e r :  l a n e  boundaries which partition the original L-dimensior al m--’asur’eme~s-t

sc-ice. The user can continue this procedure by selc-cting --n i - of the — 1-iss

gr’oii: r- and ~r-~~ ec~~ing the corresponding data onto a new two-dimensional sub-

~~~ 
- . I f  I -~”w-”n—c1ass separation in-; dgain evident , the ur-- -r ’ may again p-it--

s - i s -  j ;~ r , the original L-spacc’ with piecewise linear hyperplanes. It , due to

stat i -n-sr i :al overlap, the  c l a s ses (subclasses ) cannot be completely - ---ar’ ~s - t , - l

using this p r’ o ei ; r -c ’ , i t  is recommended that t ic ’ - user comp l ti t in ’ - log ic via

w i t h i n — g r o u p  d i scr  : mm; u i -i t i- - t i

:r ott~ - r- Plot Partiti ar - ,. The ur- ’r has ri ~- - capa h il it ’,- to draw multiple

ie -e w is e linear - ut ;V”X boundaries. The regi on externa l to i n ’~ drawn hout,d-
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aries may be desi gna ted as -i n-eject region , or can be used f or da ta c lass

designation.

Boolean (linguistic) Logic Partitions. OLPARS provides for the imp l men-

tation of linguistically-defined log ic par ti t ions . The user can wri te any

Boolean statement (any statement that can be evaluated true/false) for use as

classification logic.

Temporary logic evaluation results are displayed following any logic

implementation . Upon completing the logic desi gn , the user can next evaluate

the desi gn agains t any data set and review the resu lts of that evalua t ion

wi thin a confusion matrix format . Logic which provides adequate ctiscimina_

tion may be output to the system printer or stored within exclusive user

storage. Inadequate logic may be supplemented , modified , or dele ted .

9. Lattice Logic Structure

A capabili ty is provided which permits the ana lyst to create a 1 - i t t  1-: - - -

type logic tree s t ruc tu re. This  a l lows , in e f f e c t , for  two or more logic

nodes in an OLPA R S log ic tree structure to branch together.

10. FORTRAN Subroutine Logic

As an alternative to a simple listing of the discriminants , weigh t ing

ma trices , etc., which make up the cla :;;ification logic associated with a

g iven log ic t ree s t ruc tu re , a FORTRAN subroutine may he created which can

_ _ _ _  __— .
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--xe ;n - t ’ the log ic. The generated subroutine is in “standard” FORTRAN and may

hi’ ;- ;n -t nc -hed on cards for use at other facilities . A commented listing of the

subrootine may also be 1- t -o d i i c n - - I  and any data set may be cl;ic i I ’ 1 - - I  w i t h  Pr ’

c - - t t i ; - i l e d s u b r o u t i n” .

u .2 .  ANALYSIS OF PROGRAM QUALITY DATA

Thi: section describes the analysis of t in-n data base of 155 Ph / I  n ra-

c m - - i n ; ; . Since the present study was primarily an investigation of th -- use of

;r!,PARS to evaluate program quality , the use of OLPARS in performing the tyn;-c’s

of analysis required will be highlighted . The analysis will be divided into

three a r t s :

1. A preliminary analysis of the structure of the date. This analysis

will be used to determine measurement reduction .

2. Classification of program quality based on

a. development time

b. number of changes

c. program understandability rating

d. ~r - rg r - a m understanding leitencies

for c- t e r r t m i n i n g  those f e a t u re s  affecting these dependent measures.

3. Classification based on programming style: i.e. c l a s s i f i ca t ion  by

program author .
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The 155 programs ii - : ’ -! in  t h i s  ana ly s i s  r e J - r c - :n - u ’n t  a m a j o r i t y  of ti 200

r’ om ’r - - i m :; t h at  - - sr r - ’ - n t  ly exi’;t in t h e  Multiec-/OLPARS system . These 155 J ir c~—

gr its-s re-p ri-uet ,t the pt’ ~y,r-am- ; used in the psycho 1 - g ic - i l  eom :-lexity study - i-

described in ~ -c’ t ion 3.4.

[Note: Throughout t h  I d i s c n r - ;  i- - n , when a r- .’f c ’ r~- ri- -e is mad - to the actual

name of an art ion uoc ’d in Mul tics/C. ;A h. , that opt ion ’s nam e wi l l he n - t i - i c - c -

l i n e d .]

4.2.1. Prel iminary Analysis

At the start of the statistic al analysis , it was notic ed that c - c t - u t ;  of

the original 54 features were not appli- - i t i l e, since these wi-re not used i n

the prn i~rams examined. The features removed included :

1. Number of implicitly declared variables (all variables must he

declared in PL/T)

2. Number of explicitly declared vun -iables (since all variables mu~~t

b declared in Mul tics FL/I , this number is identical to t b -  n - m i - - n -

of variabl es)

t 

3. Average length of I/O list

4 . Number of instances of allocate

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - 
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5. Number of in st ~m r i c t ’ - ;  - it read

6. Number of inst inr ‘s of write

( The I/ O m i - t in -:; were not applicable , since Multics PL/I I / C  is p - r f o r m e d  by

si: i e-tn; su b r o u t i n e s .)

As a result -f the psychological complexity study (Sect ion 3. 14 . ) ,  four

t ; - w t - ’ - i t i i r - ’S were added :

1. Mean user interaction classification

2. Mean numeric/non-numeric processing

3. Mean log latency of understanding

4. Mean understandability rating

The resul t was a set of 52 features; 46 were structural , 14 were rela ted to

t- r’-ogr-a nn quality, and 2 were non—s tructural (user interaction and amount of

c m l ;: -~~~ n - ti - - n). The next task was to examine the structur e of t h - -  data.

Initially , an ei genvector analysis was performed.~ As an ei genvector

analysis requires normalized data , the data were normalized by normxfrm . The

eigenvec tor analysis (ei &v$sal) produced a lis ting of the eigenvalu es and the

~ Assumming that the features can be represented in a multi;limensiona l sr
_
lace ,

the first eigenvector points in the direction of maximum varianc’c- ; the
- ; ei -- onmd eigenivector points in the direction -1  maximum vari i ni ~- i- tind er the
constraint that is it orthogonal  to the first ; etc .
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corresponding aigenv e- tot From an examination of the eigenvalues , it was

- - s r i - I  that the first e I - - t n v c - - ’tn r  a- -imin ted for 35. 2% of the variance whereas

t he ‘;.- - -rm ~ vecto r i- - e -w r i t e d  for  on ly t~. 2% of the variance. From t h i s , it can

Ut ’ se- - r i  t h a t  s - h ’  first eigenvector accounts for a large part of the variance

- 0 t h e  it . Th ;€- fi - - - i ’uz which were weighted most heavily on the f i r - c t

e - -m lv - s-c- c ( i . e. correlated highest with this direction ) were :

Number of lines

Number of variables

Number of semicolons

Number of assignment statements

Number of instances of do

Number of i t i s t  m e-es of end

Number  of lexemes

The tmo~~- w i  t i - i t  t he  -lep i n~ ‘ - nt  measures (development t ime , number of

changes , etc.) would be of some importance. However , the first occurrence

(absoi te weight great er s - h i t  .2) - - i f  any -c-i the dependent measures d i - b not

- m ; ) : - - e a r -  un ti. the seventh eigenvectot (development time loading = - .332).

This vector accounted for only 3.4% ef the vari atnim e.

Thus the features which weighted highest on the first eigenvector ,

were related to program size . Other findings give similar results (see

Section 2). As a result of these findings , it has become programming

- -~~~ — - - 
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;-t’ ,i- - t ice to recommend making all programs short (less than 100 executable

lines ). However , this merely moves the problem of complexity one level

h i gher to the system design leve l without examining the eft e- t n - n  o f  c~th,-r

t- - sr ’ immi n t i tig elements on program quality.

It was felt that this finding was of limited interest by i tself . Wha t

wi: ; in s - -r e -stin g was that over’ 60% of the variance was not accountr- -b for by

program size . A question remained as to what features influence r-rogr-am

c i t i t ~~ when the effect of program size is held constant. Had all prog rams

been of the same s iz e , examining these effects would have been stra ight-

In -- t wit--I. However , the data were from programs which varied over 10:1 in

si si- . It was possible to eliminate size effects statistically by parti-3llin ,-

c - - f t  m ;ize from each of the features. This could have been done by par t t alli ng

out any r~~e of the following size related features (which are all correlated

wi th values greater than .95):

o Number of l ines

o Number of semicolons

o Number of lexemes

; i r n - c * ’  the number of lexemes gave the highest weighting on th e- first c-i g n-

vector , and since the number of lexemes more nearly reflects the overall size

of prog rams , it was chosen to be partialled out. By partialling out the

4— 14
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e f f e c t  of number of lexemes , the  r - -- -ult will s - s - in - i - un- ’ - each feature -as if the

number of- l exeme --nm i n - -ac - f; progrc-n-nn wi t - .; t i - I d  - o n s t - i n t

Partialling out t h e  - ‘f f e  t f t n - i n - c l - -  t -  of ho -x e-m i-s I n - - a n; c-a ct; le i~~n - r - - -  is

done according t i n -  the I - i l - -w ing r e l at i o n  ( see  [6]  f comp i~ - t -  d i n - ; c u s m -n - i o n

of the par t i a l l i n g  pn o- - c- - iin - r- e in t b ;  - ; -- - tit c-x t of analysis of covariance I

0
G. F. - (r  —c ( P .  - F )  -s- F)

1 1 O
~ 

I

where

thF. Value of original  fea ture  for i samp le

F = Mean value of F across all samples

= Standard deviat ion of F

= Value of fea ture being par t ial led ou t ( f or 1th sample )

P = Mean of feature P

Standard deviation of P

r Product-moment correlation between F and P

C = Feature F after influence of P has been eliminated

(par tialled out)

The effect on the individual features , in relation to the dependent

measures , of partialling out the number of lexemes can be described by the

following three cases:

4-15
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Case 1: If the feature is uncorrelated with the number of lexemes (correla-

tion 0.0), then the correlation with the dependent measure will

be unchanged .

Case 2: If the feature is identically correlated with the number of lexemes

(correlation = 1.0), then the correlation with the dependent measure

will become 0.0.

Case 3: If the correlation of the feature to the number of lexemes is

between 0.0 and 1.0 (0.0 and -1.0), then the correlation with the

dependent measure is reduced (increased) according to the degree of

correlation between the feature and the number of lexemes.

The partialling was performed on the set of features and the eigenvector

analysis was repeated on the resulting data. The results of this analysis

were much more encouraging in that no one eigenivector’ accounted for more than

50% of the variance (eigenvector 1 ~ 15%, 
eigenvector 2 10%). Those

features whiL - were weighted most highly on the first two eigenvectors were :

eigenvector 1

number of variables

number of assignments

number of external calls

number of I/O statements

number of arrays
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amount of computation

total number of dimensions

eigenvector 2

number of lines

maximum nesting

number of complex ELSE clauses

number of DO statements

The dependent measures did not load highly on any ei genvectors unti l  the

sixth vector, but this vector nevertheless accounts for approximately 5% of

the variance and its effect is thus still of interest.

In Figures 4-1 through 4-14, it can he seen that the dependent measures

are still continuous variables (as they should be). Figure 4-1 shows a

histogram (crdv$sal) of the development time , 14-2 shows a histogram of the

number of changes , 14_3 shows a histogram of the mean rating, and 4-14 shows a

histogram of the mean log latency.

Another goal of the preliminary analysis was to eliminate any measure-

ments (features) whose value was constant or typically constant , or which was

a linear combination of some other set of features. Examining a listing of

the means , standard deviatioi~s , ranges , and correlation matrix (all from

dataprnt) achieved this goal. As a result of this analysis , the following

set of 32 structural and non-structural features remained:

_ _ _



Fi gure 4-1 Fevelopment Time after Number of Lexemes is Partiall~n- d Out
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Figure 14-2 Number of Changes after Number of Lexemes is Partial1e’~
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Fi gure 14-3 Mean Rating after Number of Lexeme s is Partialled Out
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; -_ 4 Mean Log Latency after Number of Lexemes is Partialled Out
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1. Number of comments

2. Average length of comments

3. Uniformity of distribution of comments over statement lines

4. Number of lines (executable ÷ comments)

5. Number of multiple statements or assignments used

6. Number of variables declared

7. Number of semicolons

8. Maximum nesting

9. Mean variable name length

10. IF balance

11. Distribution of variable occurrences over program statements

22. Mean number of operators per assignment statement

13. Number of assignment statements

l~~. Number of instances of PUT

15. h urnber of I/O statements

16. Number of external procedures used

17. Average number of actual parameters in CALL statements

18. Number of complex ELSE clausen-

19. Number of arrays

20. Number of instances of COTO

21. Number of instances of CALL

22. Number of instances of DO

23. Number of instances of DO WHILE

24. Number of labels

25. Mean user interaction

26. Mean amount of computation (numeric/non—numeric prc-cessIng)

14—22



27. Number of based variables

28. Average density of non-blank characters outside comments

29. Number of pointer variables

30. Number of global variables

31. Number of instances of IF

32. Number of instances of RETURN

4.2.2. Classification Based on Program Quality

Contained in the feature set are variables which are measures of program

quality or program reliability. These measures include :

1. Development time of a program

2. Number of lines of code that have changed throughout the history of

a program

3. Mean understandability rating of a program (see Section 3.14.)

14. Mean (logarithmic) time to understand a program (see Section 3.14.)

The purpose of the data analysis described in this section was to establish

a set of pattern recognition schemes which would distinguish the extremes of

these variables; that is, it would distinguish :

1. Short development time from long development time

2. Small number of changes from large number of changes

3. High understandability from low understandability

4. Short understanding time from long understanding time

14-23 
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4-10

Perhaps more importantly , the analysis was used to determine which features

influenced the four measures of program quality.

A necessary condition for a pattern recognition paradigm is that the

data consist of discrete classes. Using crdv$sal, histograms were drawn for

each of the partialled dependent measures (classification variables). As

can be seen in Figures 14-1, 14-2, 14—3, and 14-4, each of the measures was

continuous in nature. Thus, in order to use a pattern recognition approach ,

it was necessary to create classes corresponding to the long and short develop-

ment time, etc. The procedure for generating the classes from the continuous

data was as follows :

1. The vectors were plotted along the feature of interest (e.g.,

development time).

2. The middle 25 vectors were removed.

3. Those vectors whose values were below the region removed were

placed in the reliable class (class name rrrr ) and those whi ch were

above the removed region were placed in the unreliable class

(class name uuuu).

The number of vectors (programs) of interest had thus been reduced from

155 to 130 with 65 in each class. Each vector contained 32 features. The

features used in the development -time and number of changes problems were

extracted from the first compilable version of each program , since one of

the questions to be answered was: “Will a program have a short development

time?” or ‘Will a program have a small number of changes?” The features used

14 - 2 4



14-11

in the rating and latency problems were extracted from the final (accepted )

version of each program since the ratings and latencies came from subjects

who had read these final versions.

4.2.2.1. Procedure

A methodology was established for performing the analysis of the

fo llowing pattern recognition problems for each of the data sets:

1. Using the partialled data

a. A Fisher discriminant (fisher) analysis was performed on the

entire data set of 130 vectors , using all 32 features. The

Fisher discrirninant is a linear combination of features which

maximally discriminates among the ~lasses.

b. The Fisher direction (i.e. the direction of maximum discrimina-

tion) was plotted using gndv$sal and a listing of the coeffi-

cients of this direction (via vec$save and vec$list) was

produced.

c. The number of features was reduced by selecting the nine

features whose discriminant weights were the largest. Note

that in using this criterion , features were selected according

to how well they correlated with the Fisher direction , inde-

pendent of whether the selected set of features were inter-
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related. The reduction was performed using dscrmeas and

trnsform. ~

d. The vectors were randomly divided into two data sets ( L i t - i  set

1 and 2) using crrandts. Each set contained 50% of the vi- -t ors .

In the subsequent analysis , one data set was used to generate

the decision logic (fisher) while the other set was used to

test the logic (logicevl).

e. Fisher discriminant logic was designed on data set 1 (fish-~r)

and tested on data set 2 (logicevl).

f. For purposes of cross-validation , Fisher discrirninant iQ~~~C w~i - ;

designed on data set 2 (fisher) and tested on data set 1 ( log i c e v l ) .

2. Using the uripartialled data

As was shown in Section 14.2.1., program size had a sig n i f i cant af fc - ; -t

on the measures of program quality. The analysis of the partialled I t a

determined which features influenced program quality when program ~n - i ; n - - -

was held constant . This part of the analysis used a size feature (number

of program lines) and the nine features from the partialled analysis tn

determine the overall program classification .

The motivation for reducing the number of features was to maintain a
nificant number of degrees of freedom for evaluating the design of the
decision logic. Unless the number of features used is much less than the
number of samples , the decision logic will be unduly affected by random
noise in the values of the features.
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a. The data set was reduced to the 9 features used in ic plus

feature 14 (the number of lines ) (using dscrmeas and trnsform ).

b. A data set (data set 4) was randomly created which contained 50%

of the data vectors in this data set (data set 3) (crrandts ).

c. Fisher discriminant logic was designed on data set 3 (fisher)

and tested on data set 4 (logicevl).

d. For purposes of cross-validation , Fisher- discriminant logic was

designed on data set 14 (fisher) and tested on data set 3 (log icevl ) .

4.2.2.2. Results

The analysis described above was used to design c l a s s i f i c a t i o n  log ic on

the four measures of program quality. The results of these analyses are des-

cribed below. It is important to keep in mind here the convenience and effici-

ency which OLPARS affords the user. For example , each of the stu~Iies described

here was completed in 30-45 minutes. This was the total elapsed time from when

the operator sat down at the terminal until the last hard-copy graph was pro-

duced.

Number of Changes

Using the full set of 32 partialled features , the discrimiriant analysis

correctly classified programs containing large or small numbers of changes

14—27
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7b% of the time. The c l a s s i f i c a t i o n  table ,

True Class

small large

small 50 16
Class i f ied

large 15 49

indica tes tha t there was some confusion in the ab i l ity  to predict the relative

number of program changes. Figure 4-5 is a histogram of the two classes pro-

l ected onto the discriminant direction as produced by gndv$sal. The extent

of the overlap of the two classes is rather clear here. Table 4-1 shows the

d i sc r iminan t wei ghts for this classification . The named features were the

ones chosen for the subsequent analysis , since they correlated most highly

with the discriminant vector direction .

The data were then randomly divided into two data sets of equal size, and

Fisher discriminant logic was designed and tested on these two sets. Table

4-2 shows the resul ting desi gn and cross-validation performance using log ic

derived from the nine partialled features. The upper right and lower left

boxes of Figure 14-2 show the results of the cross validations , where decision

logic wa:; designed on t;et one and tested on set two , and vice versa. The

significance of tI. - two-by-two classification tables was assessed by a chi—

square ( X )  test to de termine if the classification of programs was at a

chance level. (If it was , the cell frequencies in each two-by-two table

would be about even . ) The overall low level of correct test classification

(614%), though significantly better then chance in each case, indi ca tes that
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Value Name

1. .035
2. .056
3. -.02
4 . .157
5. .055
6. — .060
7. — .120
8. .141
9. - . 335 mean variable name length
10. -.110
11. .0003
12. .042
13. .251 number of assignment statements
14. — .102
15. — .009
16. .144
17. .091
1~~. -.215 number of complex ELSE clauses
19. -.195 number of arrays
20. .073
21. -.162 number of instances of call
22. .358 number of instances of do
23. .057
24. -.063
25. -.108
26. .082
27. .164 number of based variables
28. .457 average density of non-blank characters

outside comments
29. -.138
30. — .104
31. .016
32. .401 number of instances of return

Table 4-1 Discriminant Coefficients (partialled features)
for Number of Changes Analysis

(Th e named features represent the reduced feature set.)
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DESI GN SET

1 2

True True

Small Large Small Large

Small 25 11 Small1 24 9
Classified Classified J—

Large 8 2 2 J Large~ 8 23

71% Correct 73% Correct

(x2 = 14.12, p < .001)

True True

Small Large Small Large

Small 18 9 Small1 23 14

2 Classified Classif ied f-
Large 14 23 Large 10 19

64% Correct 64% Correct

(x2 = 6.62, P < .05)

Table 4-2 Cross Validated Fisher Logic for Classif ying Programs by Number of
Changes (9 Features , Program Size was Partialled Out )

u i _ 3 1
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there is considerable overlap in the two classes , even when projected in the

optimal direction.

The nine features were then combined with a program size feature (number

of lines of code ) and discriminant functions were again computed using the

unpartialled data. Table 4-3 shows the results of the design and test classi-

fications for the unpartialled number of changes analysis . Although one test

classificat ion is not signif icant, this result appears to be due to the non-

uniform ity of the randoml y chosen design and test sets. In any case , the

mean correct classification rate for the two test sets (64% ) indicates  tha t

the programs are being classified correctly only slightly better than at the

chance rate  of 50%. Some of the selected features (e . g .  number of DO loops ,

number of based variables) do intuitive ly relate to a program ’s complexity.

Howev er, the inability to classify programs accurately (according to number

of changes) using the ten best features implies that other factors may have

a substantial effect on the number of changes a program experiences between

being the time of initial compilation and that of final acceptance.

Development Time

Using  the  f u l l  ~~-t  of 32 partialled features , the discriminant analysis

correctly clac ;;ified programs which had a short or long development time 75%

of the time . The two-by-two classification table ,
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Value Name

1. .118
2. - . 014
3. .020
4. .123
5. .183
6. .131
7. — .058
8. — .135
9. -.247 mean variable name length
10. .003
11. .051
12. .073
13. .255 number of assignment statements
14. .109
15. — .065
16, .101
17. .049
18. .2814 number of complex ELSE clauses
19. -.211 number of arrays
20. .338
21. .301 number of instances of call
22. .165
23. .069
24. — .173
2 5 .  -.293 mean user interaction
26. .070
27. .052
28. .411 average density of non-blank characters

outside comments
29. — .034
30. .217 number of global variables
31. -.188 number of instances of if
32. -.062

Table 4—4 Developme~it Time (partialled ) Discriminant Coefficients
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DESIGN SET

1 2

True True

Short Long Short Long

Short 21 12 Short 20 13
Classified ~lassified

Long 12 21 Long 12 19

63.6% Correct 60.9% Correct

(x 2 
= 3.12, not significant)

True True

Short Long Short Long

Shor4 18 10 Shortj 19 8
Classified 

~
— ~1assified

2 Long 15 23 Long 13 24

62.1% Correct 67.2% Correct

(x 2 
= 5,39, p < .05)

Table 4-5 Cross Validated Fisher Logic for Classifying Programs by Development

\ Time (9 Features, with Program Size Partialled Out )
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DESIGN SET

1 2

True True

Short Long Short Long

Short 26 10 Short 29 11
Classified I Classified

1 Long 7 23 J Long 3 21

74.2% Correct 78.1% Correct

(x 2 
= 2 4 . 2 , P < .001)

(I~ _____________________________ ____________________________

C’)

F-

True True

Short Long Short Long

Short 22 10 Short 27 6
Classified -j Classified

2 Long 11 23 Long 5 26

68.2% Correct 82.8% Correct

(x 2 
= 8.79 , P < .0 1)

Table 4-6 Cross Validated Fisher Logic for Classify ing Programs by
Development Time (Ten Features, Including Program Size )
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short development period . Note that size of the nine selected features was

~lso selected for classifying the number of changes in a program ’s development.

These features (e.g. number of arrays , number of CALL statements) which reflect

the logical complexity of the programs influence both development time and

number of changes . Perhaps this is not too surprising , for there is a mod-

erate relationship between these two variables : the produce-moment correlation

is 0.26 even with the effects of program size partialled out.

4.2.2.3. Psychological Complexity (Understandability ) Measures

Since both the understandability ratings and the latencie~ were closely

related (r - .62 after program size was partialled out ), the resultc of the

two analyses will be discussed together. As in the previous analyses,

discriminant functions were computed using all 32 partialled features. Table

14-7 shows the results of the classifications , and Figures 14-7 and 14-8 repre-

sent the histograms of the data projected onto the Fisher directions for the

ratings and latencies , respectively .

Tables 14_8 and 4—9 list the discriminant coefficients for the analyses ,

along with the labels of the selected features. Few of the features selected

in the previous analyses were also chosen here. Perhaps this is not too

surprising . Development time and number of changes refer to situations in

which a programmer is working with his own program . In addition , these two

variables reflect the transformations that occur in a program from an initial

attempt to a final version . By contrast , the rating and latency variables

refer to programmers who were examining programs that someone else wrote.

$4 -39
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True Class

Easy Difficult

Easy 51 10
Classified

Difficult 12 55

Understandability Ratings

83.1% Correct

Short Long

Short 50 15
Classified

Long 15 50

Reading Latency

76.9% Correct

Table 14-7 Fisher Discriminant Logic of Ratings and Latencies
Using All 32 (Partialled) Features
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15 FIgure 14-8 Log Tine For Understanding (Partialled )
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Value Name

1. .042
2. — .127
3. — .032
4. .080
5. — .182
6. -.225 number of variables declared
7. .013
8. .287 maximum nesting
9. — .132
10. -.098
11. .032
12. .1149
13. .358 number of assignment statements
14. .100
15. -.239 number of I/O statements
16. — .020
17. .086
18. .197
19. .325 number of arrays
20. .173
21. .210 number of CALL
22. -.134
23. .337 number of DO WHILE
214. .170
25. — .084
26. — .023
27. .255 number of based variables
28. .131
29. .252 number of pointer variables
30. -.0149
31. — .001
32. .125

Table 4-8 Discriminant Coefficients (Partialled Features)
for Difficulty Rating Analysis

(The named features represent the reduced feature set.)
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Value Name

1. .114
2. — .156
3. .027
4. .100
5. — .066
6. -.277 number of variables declared
7. — .018
8. .171
9. — .1142
10. .071
11. .008
12. .319 mean number of operators/assignment statement
13. .221 number of assignment statements
14. .058
15. .158
16. .234 number of external procedures used
17. .245 average number of actual parameters in call

statements
18. - .208 number of complex ELSE clauses
19. — .123
20. .382 number of GOTO statements
21. -.150
22. .198
23. .133
24. -.022 n umber of  labels
25. .034
26. -.110
27. .160
28. — .060
29. .103
30. .138
31. -.060
32. .329 number of RETURN statements

Table 4-9 DIscriminant Coefficients (Partialled Features) for Log Latency
Analysis

(The named features represent the reduced feature set.)
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But these programs were also finished products , wi th many of the problems and

errors already eliminated . Wit1~ the two pairs of variables actually measuring

qui te different aspects of the programs , it would have been surprising if many

of the same features were used in the classification logics.

It was encourag ing that many of the features selected in each analysis

reflec t the findings of other recent studies. For example , the degree of

nesting and the use of pointer -.-ariables both contributed to increased psycho-

logical comp lexity , as measured by the ratings. In fact , several of the study

partic ipants had spontaneously mentioned that programs containing pointer

variables were difficult to follow. For the latency analys]~~, both the number

of GOTO statements and the number of RETURN statements were selected . Both

these features reflect structured programming goals: eliminate the use of

uncondi tional jumps and provide only a sing le exit from routines. (A more

detailed analysis of the features can be found in section 5.2.).

The programs were randomly split into two data sets independently for

each analysis. Fisher discrimirian t logic was then o~ :cula ted in a cross-

valida tion design . Table 4-10 shows the classification results fo~ the

ratings. The proportion of correct classifications was somewhat better than

chance (mean test proportion correct .65). The proportion of corre-t

latency classifications (.59), as shown in Table 4-11 , was sliChtly lower

than in the rating analysis and , in fact , was u t  signifi .-~ nt .

The program size feature was idded to the nine selected feitures in c ich

analysis , and Fisher discrimir.ant functions were again n~ n~ uted . Tables 4-12



DESIGN SET

1 2

True True

Easy Difficult Easy Difficult

Easy 25 5 Easy 20 12
lassified Classified

1 Difficult 8 28 Difficult 12 20

80.3% Correct 62.5% Correct

(X 2 
4.0, P < .05)

F-

Cl) ______________________________ ____________________________

Cl)

I—

True True

Easy Difficult Easy Difficult

Easy 24 13 Easy 23 12
lassified Classified

2 Difficult 9 20 Difficult 9 20

66.7% Correct 67.2% Correct

(X 2 
= 8.3, P. < .01)

Table 4-10 Classification Tables for Understandability Ratings - Fisher
Logic on Nine Partialled Features
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DESIGN SET

1 2

True True

p 
Short Long Short Long

Short 24 11 Short 18 12
Classified lassified

1 Long 9 22 Long 14 20

69.7% Correct 59.4% Correct

(X2 = 2.5, Not Significant)

F-

(1) _______________________________ ______________________________

F-

F-

True True

Short Long Short Long

Short 22 16 Short 21 10
Classified :lassified

2 Long 11 17 Long 11 22

59.1% Correct 67.2% Correct

(X2 3.7, Not Significant)

Table 4-11 Classification Tables for Study Latencies - Fisher Logic on Nine
Partialled Features

___



DESIGN SET

1 2

True True

Easy Difficult  Easy Difficult

Easy 32 8 Easy~ 28 2
Classified lassified j-

Difficult  1 25 Difficult [ 14 30

85. 4% Correct 90.6% Correct

(x 2 
= 42 .5 , P < .00 1)

F-

C-

True True

Easy Difficult Easy Difficult

Easy 31 8 ( Easy 29 14

Classified I lassified
2 Difficult 2 25 J Difficult 3 28

814.8% Correct 89.1% Correct

(X 2 = 34.2, P < .001)

Table 4-12 Classification Tables for Understandability Ratings - Fisher
Logic on Ten Features Including Program Size
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and 4-13 show the results of classify ing the programs by ratings and latencies

using the augmented feature sets. The overall proportions of correct classi-

fications , .88 for the ratings and .82 for the latencies , were highly signifi-

cant. That is , the aaiition of the program size feature had improved the

ability of the logic to classify programs in terms of their psychological

complexity.

The results of adding the size feature raised the question of how well

this feature could discriminate by itself. Was program size the only impor-

tant feature, or was it one of several influential features? In order to

assess the importance of program size, this feature was used by Itself to

classify the programs in both analyses . The results were then compared with

the results of classifying the programs using size plus the nine selected

feature~~~ Table 4-14 shows the results of using only program size to predict

understandability ratings. The results are significant , but the overall level

of performance is considerably less than the classification which used both

the size feature and the other nine (.76 vs. .88). The inclusion of the

selected features increased the performance by 12%, implying that these other

features do influence the psychological complexity of programs in addition to

the effects of program size .

The latency analysis gave very different results. The classifications ,

as shown in Table 4-15, are highly significant~ The level of performance ,

~ Statistical procedures have not yet been developed for assessing differ-
- ; ential performance as described here. Thus the effects will be evaluated

simply in terms of gross differences in performance , i .e .  in terms of
differences in percentage of programs correctly classified. The question
of statistical evaluation will be discussed further in Section 6.
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DESIGN SET

1 2

True True

Short Long Short Long

Shortl 29 11 Short( 27 7
Classified lassified

1 Long~ 14 26 Long~ 5 25

83.3% Correct 81.2% Correct

(X 2 
= 25.2 , P < .00 1)

I-
C/)

C-

True True

Short Long Short Long

Short 31 9 Short 32 3
Classified lassified

2 Long 2 214 Long 0 29

83.3% Correct 95.3% Correct

(X 2 = 32.3, P < .001)

Table 4-13 Classification Tables for Understanding Latencies - Fisher Logic
on Ten Features Including Program Size
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DESIGN ~ET

1 2

True True

Easy Difficult Easy Difficult

Easy 26 7 ‘ Easy~ 25 10
Classified Classified 

~
-

1 Diff icul t  7 26 Difficult 
Li 

22

78.79% Correct 73•144% Correct

(X 2 
= 14.6, P < .001)

F—

(J ~

C—

True True

Easy Difficult  Easy Difficult

Easy 26 7 Easy 25 8
Classified Classified

2 Difficult 7 26 Difficult 7 24

78.79% Correct . 76.56% Correct

(X 2 
= 21.9, P < .001)

Table 4-114 Classification Tables for Understandability Ratings - Fisher Logic
on Single Program Size Feature
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DESIGN SET

1 2

True True

Short Long Short Long

Shortj 29 7 I Shortl 27 ~ 1
Classified lassifie4 —1

1 Long 4 26 Long 5 28

83.33% Correct 85.914% Correct

(X 2 
= 33.1, P < .001)

C—
.4:

‘:1 _______________________________ ______________________________

C-
C-,)

F-

True True

Short Long Short Long

Shortj 29 10 Shortj 27 5
Classified~— 4 lassifie4~~~

2 Long ~~~~ 23 Long 5

78.79% Correct 84.38% Correct

(x 2 214.1, P < .001)

Table 14-15 Classification Tables for Understanding Latencies - Fisher Logic
on Single Program Size Feature
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however , is no different than when the nine features were added (.823 vs.

.824). The addition of the nine features had no noticeable effect on the

classification ~~rformance. This finding is in agreement with the fact that

the nine features were classif y ing the programs (according to understanding

latency) at essentially a chance level , as shown in Table 4-li.
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SECTION 5

SUBSTANTIVE CONCLUSIONS

5.1. ANALYSIS OF RESULTS

This section will assess the relative merits of each of the program

quality analyses as described in Section 14~ Where appropriate, a qualitative

analysis of the results will be included.

Results of the analysis performed on the latency and rating measures

suggest that substantive features do exist which affect program quality . The

discussion will beg in wi th an analysis of these results.

The results of the analysis of development time and number of changes

are less clear in determining thcse factors which affect program quality, if

development time and number of changes are used as measures of program quality.

For each of these program quality measures , correct classifications were made

at a level only slightly better than chance (50%). Section 5.1.2. will

attempt to assess possible reasons for the inconclusive results.

5.1.1. Understandability Ratings and Latencies

As can be seen from the results presented in Section 14 , program size is

an important factor affecting the assigned understandability rating and

understanding time of a program. Correct classifications increased from 59%

5—1



to 82% for latencies and 62% to 88% for ratings when size was included as a

factor . In fact, it was shown that size was the only significant factor

affecting latency. When size (number of lines) was used as the only feature

in the analysis, correct classifications were identical to those when 10

features (including size) were used. Size was the primary, but not the only,

factor affecting the rating of a program when size was used as the only

feature in the analysis , correct classifications were made at a 76% level vs.

88% when 10 features were used.

When the effects of size are removed from each feature, results are as

follows :

5.1.1.1. Latency

In general, after the effects of size are partialled , the selected set

of features for distinguishing programs which required a relatively short

amount of time to understand , versus those which required a relatively long

time to understand , while less than significant, reflects features of programs

which exemplify varying degrees of program complexity. Upon examining the

sign of the discriminant coefficients of the selected set of 9 features

(pos itive implies a large amount of time , negative implies a short amount of

time), the following effects can be seen. Note that since the results were

less than significant, no conclusions can be drawn. This analysis is included

primarily because the selected features had considerable intuitive appeal

from the standpoint of program complexity.

5—2
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1. As the number of GOTO statements increased , it took longer to

comprehend a program. In general, programs in the data base do not

have GOTO statements. This result suggests that those programs

which do have GOTO statements required much more time to be under-

stood.

2. As the number of RETURN statements increased , the time required to

understand a program increased. This suggests that as the number

of multiple returns increases , understandability decreases.

3. As the average number of operators per assignment statement in-

creased, it took longer to understand a program. This suggests

that the more mathematically complex a program is, the longer it

takes to understand it. (Number 8, below , also suggests this).

t4• As the number of variables increased , it took a shorter time to

understand a program. This would imply that having many variables ,

each with one role, is better than having few variables, each

fulfillin g many functions.

5. As the number of parameters in a call statement increased , the

length of time required to understand a program increased . This

feature reflects the complexity of intersubroutine commu~ication .

6. As the number of externally called subroutines increased , the time

required to underst~~id a program increased . This seems reasonable ,

5— 3
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since when a subroutine is called , the calling sequence and sub-

routine description have to be researched.

7. As the number of labels increased , the time required to understand

a program decreased. Labels were primarily used to identify entry

points in a program . Thus a large number of labels implies a large

number of subroutines in one physical program. It can then be

argued that a program with a large number of smaller subroutines is

easier to understand than a program containing a few larger subrou-

tines. This suggests that modular subroutines, where subroutine is

small, are easier to read than subroutines of longer length.

8. As the number of assignment statements increased, the time required

to understand a program increased . This feature, in conjunction

with the average number of operators per assignment statement , is a

measure of a program ’s mathematical complexity . Thus, as would be

expected , as the mathematical complexity of a routine increases,

the diff icul ty of comprehending a program increases. (Remember

that this feature measures the number of assignment statements

after program size has been partialled out.)

9. As the number of complex ELSE clauses increased , the time required

to understand a program decreased . A complex ELSE clause was

viewed as an ELSE clause containing more than one statement. When

viewed in the light that ELSE clauses were usually used for proces-

sing error conditions, which are typically simple constructs, this
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feature then measures the modularity (i.e., how small each module

is)  of the program. Thus programs containing small, self-contained

modules were easier to read than programs containing more complex

modules.

5.1.1.2. Understandability Ratings

The analysis performed on the understandability ratings, after size was

partialled , showed significant results. In this section those 9 features

selected as the primary factors affecting the user assigned ratings will be

analyzed to determine those concepts which caused a program to be less under-

standable. Ratings ranged from 1 to 9, where 1 is a trivial program and 9 is

an incomprehensible program. The 9 features selected were (in order of

decreasing significance):

1. Number of assignment statements - the larger the number of assign-

ment statements, the less understandable the program . This feature

is one of several features used as a measure of the mathematical

complexity of a program. Thus, as would be expected , the more

mathematically complex routines had higher ratings.

2. N~ nber of DO WHILE statements - as the number of DO WHILE statements

increased, the program became less understandable. This feature ,

in some sense , measures the logical complexity of a program. Thus,

as would be expected, the more logically complex routines received

higher ratings.
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3. Number of arrays - as the number of arrays increased , the rating

increased . Since arrays were typically used to hold intermediate

mathematical values , this feature also signifies that the more

mathematically complex routines had higher ratings.

4. Maximum nesting level - as the maximum nesting level increased , the

rating increased . As with the number of DO WHILE statements , this

feature can be interpreted as a measure of the logical complexity

of a routine.

5. Number of based variables - as the number of based variables

increased , the rating increased. In the data base, based variables

were used (in conjunction with pointer variables) to access and

modif y values in OLPARS data files. This implies that the more

types of data (floating point, integer , ASCII , etc.) being used in

files , the higher the understandability rating.

6. Number of pointer variables - as the number of pointer variables

increased, the rating increased. Typically , pointers were used to

access and modify values in OLPARS data files. The pointer variable

allows a program to access particular elements of a file. This

suggests that the more complex the filing structure used by a
*program, the higher the rating.

* There is also anecdotal evidence to support features 5 and 6. Several of
the subjects in the study spontaneously mentioned that programs contain-
ing pointer variables were quite difficult. One reason given was that
the struct ure of the data is implicit with pointer variables , while the
structure is much more explicit when the data are stored in arrays.
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7. N’~~ber of I/O statements - as the number of I/O statements increased ,

the unde rs tandabi l i ty  ra t ing ~Iecreased. For OLPA R S programs , the

I /O statements being measured are user interaction I/O statements

(as opposed to d isk I / O ) .  Typically , when user I/O is required ,

the user is asked a question (via  a call to ioa_ ) and the response

is received (via a call to read list ). Tb0 n nirw ~f h i s  r/~ o of

I !O t h u s  r ison ~ hly c 1~~ir to j ul y Qfl~ r ’ - i d i n g  the  program.

8. ~ ‘~rnber of variables - as the number of variables increased , the

ratin~ decreased. This would imply that having many variables,

each taking on one function , is more understandable than a few

variables taking on many functions.

9. Number of external CALL statements - as the number of fALL state-

ments increased , the rating increased . An external procedure call

requires the reader to understand the calling sequence and purpose

of the routine being called. This would add to the log ical complex-

ity of a program.

5.1.2.  Develo pment Time and Number of Changes

T~iis section will assess possible causes for the inconclusive results of t h e

analysis of development time and number of changes. Three possible sources

of d i f f i cu l ty  can be ident i f ied:

1. The characteristics of the particular program data base used.
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2. The reliability and validity of the measures of program quality.

3. The quantification of program features.

Any combination of these factors could have influenced the results. In the

next three sections, each factor will be addressed separately.*

5.1.2.1. Problems with the Program Data Base

As was stated in section 3.1.2., the characteristics of the data base

were such that programs selected to be included represented programs from one

company, from one programming project, from one programming language, and

from programs of only four programmers. It can reasonably be inferred , then ,

that the data base may represent too homogeneous a population of programs.

That is, programs to be included in a data base for this type of analysis

should either include programs from a wide variety of sources, or include

programs whose features were varied in a systematic manner. Had other sets

of programs been included , results may have been more significant since

slight diFferences in a structural feature would not greatly change any

measure of program quality.

* Factors 1 and 3 may have also influenced the suboptimal classification
performance with the rating and latency analyses. Although the relation
between the two factors and these analyses will not be explicitly
discussed , it should be recognized that the discussions apply to these
analyses as well.
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5.1.2.2. The Validity of the Program Quality Measures

On performing the eigenvector analysis on the unpartialled data (Section

~ .l .) ,  it was shown that the first eigen~r.:~or accounted for a large portion

of the variance in the data . Upon further investigation , it was shown that

this first eigenvector related to the size of the programs. Further, the

dependent measures (development time , etc .)  did not weight highly on any

eigenvector until the seventh and eighth. The dependent measures were inde-

pendent of the size-related features. This suggests that the dependent

variables and the independent variables (features) were actually measuring

very different things.

5.1.2.2.1. Number of Changes

The number of changes was used to estimate the number of errors that

occurred in a program. It was measured as the number of lines of code which

changed over the entire development of each program. Possible problems with

this measure exist in that no qualification for the cause of each change was

made (such data were not available). Thus a program may have had nany changes

which were due to a redefinition of the program function . In such a case ,

the program should have been divided into two subgroups , where the first

group represents the programs used in the earliest definition of the program

and the second group represents the programs used in the second definition of

the program . The two groups would then be viewed as two separate programs.

However , since such qualification data was not available , it was not possible
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to do this. Thus the estimate may not only represent the number of errors,

but also stylistic changes (comments, indentations) or modifications of

functions.

5.1.2.2.2. Development Time

The development time was used to estimate the amount of effort required

to make a program function properly. Two problems exist with this measure :

1. The measure was at best a rough estimate of the development time.

It was measured as the number of uifferent months on which a program

was tested , without regard to the amount of effort expended in each

month on that program (since the data were not available).

2. As with the number of changes, no reasons were available to explain

why programs were being debugged in a particular month or how many

manhours actually went into the development of the program.

Thus the measure may not have accurately represented the amount of effort

expended in making a program function properly.

5.1.2.3. Problems with Structural Features

In defining structural features, the goal was to quantify certain quali-

ties of a program which affected the logical and psychological complexity of

a program. For example :

5-10



p

1. In trying to measure how well a program was commented , the following

features were selected :

a. Number of comments

b. Average length of comments

c. Average density of non-blank characters within comments

d. Uniformity of distribution of comments over a program (variance

from mean is used )

Distributing comments over a program in many different ways will

give almost identical results for each of these features.

2. In trying to measure how mnemonic or useful variable names were ,

the feature selected was the mean variable name length. Perhaps a

better measure would be the mode, maximum , or minimum variable name

length. Or perhaps some quantity other than length (e.g., a direct

measure of mnemonic value of a name) would have been better.

3. In trying to measure how much computation a program performed , the

features selected were :

a. Number of assignment statements

b. Mean number of operators per assignment statement
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Instead of the mean number of operators, perhaps the maximum number

of operators more accurately represents the mathematical complexi ty

of a nrogratn.
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SECTION 6

MET HODOLOGICA L CON CLUSIONS

The research discussed in this report approached the problem of investi-

gating program quality from the perspective of a classification analysis.

Although the validity of such an approach will be discussed in Section 6.2.,

the methodological aspects of the analysis actually performed will first be

reviewed .

6.1. USE OF OLPARS AS A CLASSIFICATION TOOL

Perhaps one of the strongest arguments for the use of OLPARS to analyze

data sets is that the total analysis time decreases dramatically. Anyone who

has tried to run an analytic routine using a standard statistical package

such as BMD or SPSS can certainly appreciate the convenience of using a fully

integrated system such as OLPARS . The ability to run analyses (e.g., eigen-

vectors, discriminant functions) by the typing of a single command , while the

system automatically maintains the data files, necessarily results in

increased throughput (and reduce~.. frustration on the part of the user). For

example , all the analyses described in Section 3.4.2.2. were run in a single

3-hour session; But even then , part of the 3 hours was used to create hard

copies of the graphic displays. In another session , the total analysis of

the stylistic differences among the programmers (Appendix D) required

only one hour of connect time. This included the complete development and

testing of the hierarchical classification logic.
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Another very positive aspect of OLPARS as used in this study was that

graphic displays were generated effortlessly. The ease of constructing plots

of ~üstograms and scatterplots enabled the analyst to remain close to the

data throughout the analysis , thereby allowing the immediate detection of

anomalous situations. For example , by displaying the distributions of the

data projected onto the Fisher discriminant directions , it was possible

directly to assess whether the shapes of the distributions had affected the

performance of the classification logic.

Other aspects of OLPARS were not so convenient , either due to the lack

of desirable features of the system , or due to the nature of the problem at

hand . For example, OLPARS contains a feature which allows users to specify

arbitrary data transformations by entering a FL/I program. It would have

been desirable to partial out the effects of size using such a user-specified

transformation . Unfortunately,  the routine that allows the creation of these

PL/I programs was not designed for such involved transformations. As a

result , a minor restriction prevented the use of the transformation package~

Another inconvenience was due to the nature of the problem at hand . In

a typ ical pattern recognition problem, an analyst starts with two (or more )

sets of sample vectors, one from each a priori class. The goal is to use a

combination of the features in the sample vectors to predict the class

membership of the samples. The only requirement is that the ratio of sample

* The problem was that the OLPARS routine automatically inserts a semicolon
at the end of each line. As a result, multi-line statements were not
allowed . Thus, it was impossible to write data definitions for the full
mean and standard deviation vectors. By making the inclusion of semi-
colons at the end of statements a manual operation , this restriction
could be easily circumvented .
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size to number of features be large. In the present problem , the goal of

correct classification was a necessary but not a sufficient condition . It

was important to be able to specify the quality of a program as either good

or bad , but , perhaps more importantly, it was desirable to determine which

features actually contributed to this distinction .

In the type of research discussed in this report , it is desirable to

investigate the contribution of individual features. For example , it is

possible to assess whether a discriminant function of n features is classi-

fying above a chance level by means of a goodness of fit test (or perhaps

more appropriately, by means of a multivariate analysis of variance [2].

However, there is no way that one can objectively (i.e., statistically )

determine whether the addition of the n+l feature will significantly improve

the classification performance.

The lack of an evaluative procedure is not unique to OLPARS . It is

unclear whether any such evaluative procedure has been developed or even

discussed in the statistical or pattern recognition literature , althoufh

procedures are available whe—’ the dependent variables are continuous .

This situation is discussed further in Section 6 . 2 .

The fact that the data were initially continuous imp lied tha t oni’, one

class was present. As a pattern classification approach was to b e used in

analyzing the data , it was necessary to split the data arbitrarily-.- ..~o two

classes. OLPARS assumes that the data already reflect discrete classes , and
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thus the procedures for splitting a single class are less than adequate. The

problem was not that an additional routine could not be incorporated into

OLPARS , for the subroutine would be relatively simple. Rather, OLPARS was

designed as a system for analyzing class data, and classes are typically

unique and specifiable a priori.

6.2. DISCRETE CLASSES OR CONTINUOUS DATA

The analyses performed in this project were all approached from the

perspective of a pattern classification paradigm. In certain situations ,

this was entirely appropriate. For example , the analysis of programmer style

clearly fits the classification paradigm. The data represented four unique

classes , defined by the particular authors of the programs. There were no

confusions as to which program belonged to which class.

The analyses of program quality were somewhat different. Each of the

dependent variables was continuous in nature; in fact , each was measured

along an interval scale. It is always possible to reduce interval measure-

ments to ordinal or categorical (dichotomous) scales, but considerable informa-

tion is lost. (This point will be expanded below.) Figures 14—1, 14-2, 14-3,

and L.~4 clearly show that the dependent measures are not dichotomous, but

continuous. There are no distinct clusters, not even bimodality in the

distributions : there is only a gradual transition from simple to d5fficult ,

short to long development time, etc. One can always divide the continuum in

two, but the division will be arbitrary . Another analyst will split the data

at another point. Even the same analyst will probably not be able to replicate
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his line of demarcation accurately. (See [1] and [4] for a further discus-

sion of this point.)

~f course , it is always possible to reduce the data to ordinal or even

categorical scales (as was done in this study). For example , Tabie 6-1 lists

the performance of several hypothetical systems as measured on different

scales. In reducing the scale of measurement from interval to ordinal , the

difference between systems A and B becomes comparable to the difference

between systems B and C. The fact that system A is considerably better is no

longer retained. A similar information reduction occurs when the scale of

measurement becomes categorical.

In the present study , the dependent measures were reduced to categorical

information because originally it was felt that program quality was categori-

cal (e.g., reliable/unreliable). Later, the categorical nature was retained

because the data were compatible with the analytic routines contained in

OLPARS . One point that should be made is that the same analysis could have

been used if the dependent variables remained continuous. t is known ~-at

for a two-class problem , the linear discrimiriant function is equivalent to

the l inear mul t i ple regression equation (see [13] and [5]).

Bu t there are addi tional benefi ts to be gained by the use of continuous

data. For example , it is possible to use analysis of variance techniques in

order to assess whether the addition of another feature will result in a

significant increase in performance. Also , separate design and test data

sets are unnecessary , as there are additional statistical techniques to
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Table 6-1 Performance (Percentage) of Several Hypothetical Systems

Interval Ordinal (Rank ) Dichotomous
System Measurement Measurement Measurement

A 99.9% 1 1

B 79.9 2 1

C 79.2 3 1

D 79.1 . 4 0

F 64.0 5 0

F 62.7 6 0
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determine the amount of decrease in performance as a function of sample size,

number of features, and obtained performance level.

The point is that the current OLPARS system did not contain routines to

deal with continuous data. Thus in order to use this efficient system , the

data need to be transformed to be compatible . It is important to note that

the inability to manipulate continuous data is not a shortcom in g of OLPARS ,

as the system was designed for discrete class applications. The next section

will discuss extensions/modifications to OLPARS so that continuous data can

be processed as efficiently as discrete data.
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4.

SECTION 7

RECOMMENDATIONS FOR FURTHER RESEARCH

Th is report has emphasized the ease with which OLPARS could be used to

determ ine the relationships among selected features of computer software and

to assist in classification of that software into categories of interest.

As a pilot study,  the experimentation reported here was surprisingly

successful . The ability to classify programs according to the style of the

programmer who wrote them , for example , was an unexpected outcome . At the

same t ime , the data ba se was relatively small , and other l imitations in the

available data would make it unwise to generalize the substantive results of

this project.

As more data become available , it will be desirable to conduct further

small-scale studies to test carefully defined hypotheses concerning components

of software quality.  Among the experiments to which OLPARS mi ght be appl ied

are such studies as the following :

1. In the determination of features which contributed to program

readability, a set of existing programs was used . Another , more

controlled approach would call for the generation of sample programs

with designated features to be tested for understandability, and

other characteristics of program quality , in an experimental

setting .
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2. As noted in this study , the length of a program is likely to be

inversely correlated with its understandability . This observation

has led to the recommendation that program modules be kept short--

typically , to a page or two in length. It has not been shown,

however, that a reduction in module length will lead to greater

system quality,  since a larger number of modules , with a much

larger number of interfaces , are likely to be required by the total

system. (In the extreme case, N modules will require N (N-l)/2

interfaces.) For this reason, an evaluation of total system quality

is needed , with techniques for estimating and predicting system

reliability/unreliability.

3. As of April , 1977, RADC has gathered reports concerning over

25 ,000 errors from seven software development projects. This newly

acquired data base can serve as a source for future studies of

factors affecting software quality. Since this data base includes

a variety of languages , programmers, and project goals, it should

serve to validate or modif y the substantive results of the study

reported here. Specifically, the program features and classifica-

tions used in this study should be applied to RADC ’s expanded data

base to determine factors affecting program quality, using methods

which are based on those dev’loped for this study.

14. Research in pattern recognition , as applied to such areas as waveform

processing and image identification , has shown that it is essential

to understand the process by which specific patterns are generated.
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For example , a m e f f e c t i v e  logic for recognition of radar pat terns

requires a detailed knowledge of radar technology , as it enters

into the generation of those patterns.  Similarly , it is l ikely

that a much better understanding of the software production process

will be required to identify those characteristics which contribute

to software quality. For this purpose , controlled studies of the

software production process will be needed . Luring the ~resent

study , nethods for evaluating the understandability of programs

were developed ; such techniques ought to be expanded to include

tests of the ease with which programmers can use various types o~

program specifications , program structures , programmer team organi-

zations, documentation standards , and other ~actor$ which can

contribute to software quali ty .

The studies reported here have demonstrated that the existing OLPARS

implementation is capable of testing features against desi gnated classes , to

develop a classification log ic for programs. It would be interesting to

determine what additional facilities might be added to provide a coirprehensive

Set of tools for research in factors contributing to program reliability .

Other versions of OLPARS have been developed with specialized capabilities

for waveform analysis and for image extraction , enhancement , and analysis. A

new implementation , the Automatic Feature Extraction System , will provide

specialized cartographic capabilities. Similarly, it is possible to describe

am OLPARS which provides specialized tools for research in software reliability .
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Such a specialized system might include the following facilities :

1. A language-independent feature extractor. This would permit the

user to specify syntax of the language under investigation , and

would extract selected features from the target language . Output

from this operation would be feature vectors for input to other

OLPARS routines.

2. Several of the software studies undertaken under RADC sponsorship

require techniques for dealing with continuous variables, rather

than the disjoint distributions assumed by OLPARS . For example ,

estimates of software reliability would require the ability to

estimate a variable quantity , rather than merely to classify pro-

grams into reliable vs. unreliable categories. One typical tool

for producing such estimates, which is not now contained in OLPARS ,

would be a facility for multiple regression analysis. Techniques

for regression analysis are well known and could easily be included

in a specialized OLPARS implementation .

3. Input features to OLPARS classification logic now must be numerical

quantities , measured on a ratio scale . Many of the features of

interest in software reliabi lity research , however , are qualitative

rather than quantitative in nature. To take a simplified example ,

some languages (such as ANSI FORTRAN ) rely most heavily on a DOUNTIL

structure for DO loops, while others (such as PL/I) rely on a

DOWNILE structure. It should be possible to include this as a
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feature for input to OLPARS ; but it is a qualitative (DOUNTIL vs.

DOWHILE ) feature , rather than a quantitative one.

An earlier version of OLPARS (AMOLPARS), wh ich used the i oodyear

Assoc iative Memory , provided the abi l i ty  to use qualitative features ,

as well as quantitative features. This ability should be included

in a specialized OLPARS facility for software reliability research .

4. PAR has developed a meta-compiler , PARLEZ , which permits the user

to define syntax and semantics of a new language , and which provides

a compiler for the language as defined. A second meta-compiler ,

XMETA , is also under development. One or both of these facilities

should be provided in a specialized software research laboratory ,

for the purpose of developing and testing new language structures

in an efficient way.

5. General enhancements of the OLPARS design would be desirable in a

new facility , including such statistical tools as the following :

a. Stepwise multi ple regression analysis

b. Optimal regression techniques , indicating the best number of

features to be selected

c. Traditional factor analysis routines
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d. More flexible non-linear mapping and multi-dimensional scaling

routines

e. Improved procedures for splitting classes

f. Analysis of variance routines

g. Covariance analysis routines

6. Inter- otive facilities for the specialized OLPARS might include the

ability to display two or more software modules in a variety of

positions, to permit the user to make judgments concerning their

readability, structural characteristics, depth of nesting, etc .

Since existing OLPARS routines have been found to be valuable in the

analysis and classification of programs , and since the extensions described

here are relatively minor and well within the state of the art, the develop-

ment of a specialized OLPARS implementation for the study of software appears

to be a feasible task.
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APPENDIX A

UNDERSTANDABILITY STUDY

A.l . INSTRUCTIONS TO SUBJECTS

The purpose of this study is to evaluate factors which enter into the

r~liabi1ity of computer programs. One possible factor is the ease or diffi-

cultv with which a programmer can read an~ understand the operation of the

program .

I n th is  study you are to assume that your task is to translate PL/ I

p rograms into another high-level  language . You wil l  be given a se~ of

programs , one at a time . You are to study th~ f irst t r o ~ ran ur.ril .‘oc

understand it sufficiently to be able to rewrite it in another 1angua~e.

(You need not memorize it , only understand its operation.) The lerwth of

tine you st’i ly the program will be timed , but you should take ~ic~r ~ in~ to

read and understand the program. You will be given scrap p~irer which you may

use to take notes , draw flowcharts , Linci-simulate the ~-roC rar~, etc.

When you have indicated that you are finished studying the rrrc ’r~ n , you

will be asked to rate the program from 1 to 9 on a scale of understandability .

A rat ing of 1 will  imply that you understood the program thf inst int you

looked at it :  it was trivial. A rating of 9 will imply that the p r o-~ram is

incomprehensible: it looks like a random list of statements. Intermediate

ratings will indicate that intermediate levels of effort were req~iired in
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order to understand the program. That is, the rating should roughly reflect

how hard you needed to work in order to understand the program . You should

try to use the entire scale from 1 to 9 to assess the understandability of

the programs.

After you rate the program , you will be asked to classify the program.

You will select one category from the following classification scheme , and

record the appropriate number :

No User User Output Interactive

I/O Provided I/O

Numeric
Routine 1 2 3

Non-numeric
Routine 4 5 6

For example, if a program is mainly a numerical routine which interacts with

the user, the appropriate classification will be class 3. (It might help you

to associate Non-numeric Routines with I/O bound programs, and Numeric

Routines with CPU bound programs, but remember that this association is only

a guideline.)

Finally, you will be asked a question about the functioning of the

program. You will have one minute to answer the question . (You will have

access to the program listing at all times.) If you answer the question
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correctly, you will be credited with 25~ . If you answer incorrectly, or if

you do not answer in time , you will lose l0~ . The difficulty level of the

question will be independent of the complexity of the particular program .

After the question , you will be given a short break , and then the cycle will

repeat.

Each session will last approximately one hour , in which time you should

be able to study 4 programs. There will be 8 of these sessions ; you will see

a total of 31 programs. If you answer every question correctly, you will be

paid a total of $8.00 at the end of the study (as well as being able to

charge the 8 hours to the OLPARS Reliability project). But remember that lO~

will be deducted for every incorrect response, so be sure to study each

program carefully until you feel that you understand it. If you fail to

correctly answer a total of 5 of the questions , your participation in the

study will terminate. However, you will be compensated for your participation .
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AFP L~W IX B

PROGRAM DOCUMENTAT ION

Program Name : lastextract

Program Type : Command level routine

Program Call: Type in “lastextract ”

Input Files: lastextract assumes a data base organization as

described in Section 3.1.1.

utput Files: lastextract creates a file named “filedata ” in

the process directory. This file will contain

the feature vectors corresponding to the last

version of programs in the FL/I OLPARS/Relia-

bility data base. Upon completion , this file

is in a form such that if Multics/OLPARS func-

tion “fileinput ” is executed , these vectors

will be input into Muitics/Ol PARS.

Function :

lastextract is the executive routine to perform the feature extraction

\ 

on the last version of all 260 programs in the OLPARS/Reliabilitv data base.
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Subroutines “list extract”, “parse ”, and “count_comments” are called to

extract structural features from the programs in the data base.

Features:

Feature Number Feature Name

53 Development time

54 Number of changes

Detailed Program Description : See listing
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Program Name : list_extract

Program Type : Subroutine

Subroutine Call : Call list_extract (listptr , ccount , features)

Input Parameters :

listptr Pointer to the cross-reference listing of a

program

ccount Number of characters in the cross-reference

listing

Output Parameters :

features An array of features corresponding to the

extracted features of this program

Function :

list extract extracts the following structural features from the cross-

reference listing of a FL/I program :
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Feature Number Feature Name

5 Number of lines

8 Number of variables declared

9 N umber of variables declared but not referenced

13 Mean variable name length

16 Distribution of variable occurrences vs.

program statements

19 Number of pointer variables

20 Number of based variables

21 Number of implicitly declared variables

22 Number of explicitly declared variables

24 Number of external calls

25 Number of external procedures used

26 Mean number of formal parameters in procedures

27 Mean number of actual parameters in call

statements

29 Number of global variables

32 Number of arrays

33 Total number of dimensions ~f arrays

Detailed Program Description : See listing
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Program Name : count comments

Program Type: Subroutine

Subroutine Call : Call count_comments (p ~.1pt r , cc , mum_lines ,

features )

Input Parameters :

p~1ptr Pointer to the source listing of a FL/I program

cc Number of characters in the source listing

lines Number of lines in the source listing

~ut; ut Parameters :

features An array of features corresponding to the

extracted features of this program

Function :

count_comments ‘~xtracts the following structural features (relating to

comments) from the source listing of a FL/I program :
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Feature Number Feature Name

1 Number of comments

2 Average length of comments

3 Average density of non-blank characters within

comments

4 Uniformity of distribution of comments vs.

statement lines

6 Average density of non-blank characters outside

comments

Detailed Program Description: See listing
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Program Name : clt

Program Type : Subroutine

Subroutine Call: Call clt (firstname , lastname, feature)

m i ~t Parameters :

firstname The name of the first version of the file to be

compared

lastname The name of the last version of the file to be

compared

Output  Pa rameters :

feature The number of lines of code that have changed

Lnction :

cit compares the first version of a FL/I source program to the last

version of the program and returns the number of lines of code that have

changed .

Detailed Program Description : See listing
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Program Name : extractem

Program Type: Command level routine

Program Call: Type in “extractem”

Input Files: extractem assumes a data base organization as

described in Section 3,1.1.

Output Files: extractem creates a file named “filedata” in

the process directory. This file will contain

the feature vectors corresponding to the first

compilable versions of programs in the FL/I

OLPAPS/Reliability program data base. Upon

completion, this file is in a form such that if

Multics/OLPARS function “fileinput” is executed ,

these vectors will be input into Multics/OLPARS .

Function :

extractem is the executive routine to perform the feature extraction on

the first compilable version of all 260 programs in the OLPARS/Reliability

data base . Subroutines “list extract ,” “ parse ,” and “count_comments” are

called to extract structural features from the programs in the data base.

“extractem” then extracts the following two non-structural “lastextract” then

extracts the following two non-structural features:
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Feature Number Feature Name

53 Development time

54 Number of changes

Deta iled Program Description : See listing
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Program Name : middle

Program Type : Command level routine

Program Call: Type in “middle”

Input Files: “middle” assumes that in file “filedatal” in

the process directory is a single node of 155

vectors with 52 dimensions in the MOOS function

“fileinput ” format .

Output Files: “middle” creates a file called “filedata” in

the process directory . This is a file in

“fileinput” format containing two nodes with

the number of vectors in each node set by the

user but each vector has 52 dimensions.

Function :

“middl e” is a routine which operates externally to OLPARS with the

f unction of removing N (set by user) vectors from a data set. The N vectors

removed are those vectors which comprise the middle N vectors if each vector

is ranked according to a selected measurement. Two classes are created , the

first class representing the first (155-(N/2)) vectors of the ranked list,

and the second class representing the final (155-(N/2)) vectors. This
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routine was used to create the two classes each of low and high development

time , number of changes, understanding latency , and understandability rating.

Such a routine may not be needed in a future version of OLPARS.

User Interaction :

“How many vectors are to be deleted from the middle?”

N

“Enter 2 new 4 character class names”

rrrr

uuuu

“What feature is to be used?”

n

Detailed Program Description : See listing
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APPENDIX C

DATA BASE GENERATION

The OLPARS ~- r o , ’r iT - were prepared on RADC ’ S Multics computer Ii - ii it ,~

(HIs 645 , lat e u i ~ide 1 t o  HIS 6180). As a monthly procedure , the M uit ics

-;erator ~ ivro-; all files (programs and data) that exist on the system at th -~~

t ime . In addi tion , a tabular listing of all saved files is generated. This

li sting contains the tape numbers of the tapes used , and the name s of the

Ji r-e~- tories and segments saved on each of the tapes.

The tapes and listings prepared by Multics provided the historical dita

r~~ u ired by thL  ;- roject. By comparing earlier and later versions of th .

an e~ t imate could be made of the number of corrections requi r~ - f r

each j r o ~ tom . In ~d d i tion , it was possible to estimate development tim e for

th e programs , by determining the time at which the program firnt ~!reor -d and

the tjm~ at which corrections were no longer required. It w i -  ~iTho pos-~ih l e

to locate the earliest versions of the f rofr ine; , and thus to determine those

f -~~to r s  which were most ikely t o  requir correction .

It was first necessary to locate and restore those programs required for

this study ,  by searching the archived listings for all app licable cegmonts.

Th is t 1~~r~ was somewhat si m p l i f i e d , since the names ~f the direc tories ~~~~ in

the  O LPARS development were known , together w i t h  t h e  dates at  which  t he

d i reu t o r i~e were active . A list of the tape numbers , directory names , and

~~~ r ri er i t  name s to be restored was then generated . This list was ~u; ‘1 ied to the

Mu ltics oper~itor , who then restored the required f i l e s  in the N1 u 1 ti -~ system.
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The next task was to organize the restored programs into an e~ si ly

i-:cersibie form (i.e. to create the program data base). A sub—dire~ tor ,’ (in

t he f o r m  “~ rogram name”.ill ) was then created for each uni que program name .

There are currently 260 r u e h  sub-directories , represent ing  the 260 programs

considered for th i s  study .

Aft er the files were restored by the Mul t ics  opera tor , there were many

copies and versions of each program . Every copy of each FL/I program was

th . n plac ed in the sub-directory corresponding to the program ’s name . Prior

t~~ m o ’ rtion into the sub—~1irec tory , a unique two-character extension was

added to the program ’s f i l e  name , so that each c o y  of each program would

have a un ique name . This extension was based on the tape , directory , and

archive from which  the program came . The assigned extension name is such

tha t  if an ASCII sort is performed on all of the programs using the extension

name , a chronological sequence of all copies of the program will be the result .

The new name assigned to the program is of the form “program name.exten-

sion.pll” . The copy of the program , with the new name, was then inserted

into its appropriate sub-directory. Each sub-directory was then sorted on

the extension to give a chronological history of that program . Identical

copies of each program were deleted , with the result that each sub-directory

contained every unique copy of that program sorted in chronological order.

The first comp ilable version of each program was then i den t i f i ed , and all

other versions of that program were archived to save space.
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In summary , then , each sub-directory represents each program to he used

in this study. Each sub-directory contains every unique version of that

ro~, t - im listed in chronological order by copy d~ite .
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APPENDIX D

CLASSIFICATION BASED ON PROGRAMMING STYLE

In Section 4.2.2., program features which influence program quality

were d etermin ed , where program qual i ty  was variously def ined  as devel opme nt

t i m e , number of changes , psycholog ical complexity rating , and unders tand ing

latency . In this appendix , an at tempt is made to classif y programs by

author. It was assumed that each of the four authors wrote programs usinG

individual combinations of the various structural features. If the programs

of the four programmers differed systeilatically in regard to quality of their

programs , it mi ght be possible to rela te the success of an au thor ’s programs

to the use (or elimination ) of certain specific features. This section pre-

sen ts an ana1y~ is , performed using OLPARS , which attempted to distinGuish the

programs by author.

The four programmers varied in the number of programs each wrote , as csn

be seen in Figure D-1 (treedraw ). Before the classification analysis began ,

it was important to determine whether any significant differences existed

among the four sets of programs in regard to the four measures of program

quali ty. In order to assess the presence of systematic differences , a one-

way analysis of variance was computed for each of the measures of Drogram

quality. (A multivariate an alysis of variance would have been a more appro-

pria te stat is t ic , but since a program to perform this analysic was not readily

available , individual univariate analyses were used.) The analysis of var i-

ance tables for each of the program quality variables are shown in Table fl-i .

There were no significant differences between the programs written by the
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pig 4 ( 24 )

pig 3 ( 3 0 )

Is’s
(155)

~~~~~~~~~~~~~~~~~~~~~~~~~ 
)

Figure D-l Data Tree for Programmer Style Analysis
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p
Source of Degrees of Sums of Mean
Variation Freedom Squares Squares F

Development Time 3 22.09 7.365 1.58

S/Development Time 151 703.10 4.656 -

Number of Changes 3 13619.195 4539.73 1.37

S/Number of Changes 151 500306.661 3313.29 -

Latency 3 .269 .090 1.58

S/Latency 151 8.61 .0 57 —

Ratings 3 20.09 6.697 2.31

S/Ratings 151 438.64 2.90 —

*
p > .05

Table D-l Analysis of Variance Tables for Assessing Differences in Program
Quality Among the Programmers
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fo~ir programmers in terms of any of the measures . From another  ~ersp e~~t i v e ,

there was as much variation in the quality cf in individu a l author ’s programs

is there was a -roes the I ro Grarn s f the four  autd re . The impl ica t ion  w i ;

tha t  the subsequent style analyeie wo ;ld etill disc-over how the programmers

var ied among themselves , but the variati n would be strictly sty l i stic , and

not related to ;r o ~~r am q u a l i ty .

D.l. CLASSIFYING USING 32 FEATURES

The first goal was to classify the pro grams n rrectly by programmer

usi :~~ all 32 structural featurea . By examining the d ie;’- riminant dir~ etion

(gndv$idl) for all 14 programmer classes simultaneously (see Figure D-2), it

car) be seen tha t programs written by programm ers 1 and 3 are rela tively

d~ r ern :ihle while  those of programmers 2 and 14 are not. The first step was

thu s to separate programs written by programmer 3 from all others . This was

accomplished t finding the direction which maximally discriminat ed prog rams

of programmer 3 from those of rogrammer 1, 2, and 14 (~~~~~Sld l where group 1

z progra mmer 3 and group 2 programmer 1, programmer 2, and programmer 4 ) .

Af ter ac compl i sh ing  this , a tnreshold was set (dra$bndy) for separating out

programs of programmer 3 (see Figure D-3). On the desi gn set , wi th this

thr’rshold value , correct classifications were made 90% of the t ime .

The next step was to determine which class was most d i ; - riminable of the

remaining class~~; 1, 2, and 4. By examining t h e  disc rim iriant direction

(gndv$ldl) for programs of programmers 1, 2, and 14 s imul tan eously (see

Figure D — 4 ) , it can be seen that programs of programmer 2 ire discriminabit

fro m t h o se  of programmers md 4. From t h i s , the  next step was to separate
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Figure D—3 Discriminant Direction and Threshold Value
for Separating prg3 from (prgl , prg2, prgL4)
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pT e~ rammer 2 by finding the direction which maximally discriminates programs

of programmer 2 t rom those of programmers 1 and 4 (ardg$ldl where group 1 =

r r n r lmrn ec 2 and gm up 2 = programmer 1 and ; c’ogrammer l4)~ Next , a threshold

Was c e t  (dra$bnd y) for separating out programmer 2 (see Figure D-5). On the

de- i ’ ic set , with this threshold value , correct classifications w~re made , a t

this level , l3~~ of the rime .

All that p c-n a m ed to be done was to discriminate programs of J PI) gra rnner

1 from those of programmer 4~ This task wi- accomplished by examining the

discriminant direction for separating class 1 from class 4 (ar~~$ldl where

group 1 programmer 1 and group 2 programmer 4) and setting a threshold

value (dra$bnd y) (see Figure D-6). On the  design set , with the selected

threshold , correct classifications were made , at this level, 95% of the time .

The logic for separating programmers is now complete , and the logic

designed can be represented by the logic tree of Figure D-7 (drawn by

draw$log ), where node numbers 2, 4, 6, and 7 re~ resents a classification to

programmer 3, 2, 1, and 14 respectively. Node 1 represents the logic for

separating programmer 3 from 1, 2, and 14~ Node 3 reiresents the logic for

separating programmer 2 from 1 and 4. Node 5 represents tf ,e logic for

separating programmer 1 from 4. The final step was to perform an overall

evaluation (log icevi) of this logic on the 32 dimension design set. The

confusion matrix for this test is given in Table 0-2 and it shows that

correct classifications were made 83% of the time .
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Fi gure ~~5 Discriminant Direction and Threshold for Separating
Class 2 from Classes 1 and 4
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Figure ~-6 Discriminant Direction and Threshold for Separating
Programs of Programmer 1 from Those of Programmer 4
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True Class

prgl prg2 prg3 prg4

prgl 42 2 0 0

prg2 5 142 2 1

Classified prg3 3 14 27 6

prg4 3 0 1 17

rejt 0 0 0 0

Table D-2 Design Data Set of 32 Features Passed against
Logic for the Design Data Set
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In the next two sect i us , the eg i -  as described in t h i s  n ect  i n  wi 1 f

i t - . -  it . f , except that at each leve l of tic - logic , t b -  l e s t  ;c,lc ;c t f 10

fe.t t c i t e s  will he used for performing the d i s c r i m i n a t i o n .  Th i s  su b s e t  f the

best 10 f t i t c c r e  will be derived from the hi ghe;;t (absolute value ) 10 c o c f t j -

c ien t s  of the di rec t ion  which  perf ormed the discrimination .

The lee tfi c ient ; of the direction which separated programs of programmer

3 t rom the- ;. f programmers 1, 2, and 14 (corresponding to the coef f ic i ents of

the dir . t ion fe; -ribed graphically by Figure D-3 , and to the logic designed

1~~gi nod e 1 in Figure 0—7) , and the selected 10 features are listed in

Tat ,. -3.

The - o ~’f t i c j e n t S  f the direction which separated programs of programmer

2 - - m h~ 
-
~t c grarnrners 1 and 4 (corresponding to the coefficients of

the f i r ’ - i -a -. t. e- :ribed graphically by Fi gure D-5 , and representing the

log i c ~e’ ,i,’ t c e - i  i t  log ic node 3 in Figure D-7), and the selected 10 features

—cr’ 1 ‘ - t ed in T a t  . 2—’.

The coef fi- i sts of the direction which separated programmers 1 and 14

(corresponding to the coefficients of the direction described graphically by

Fig ure 0-b , and repr esen t ing the logic designed a t log ic node S in Figure

D-7), arid rh selected 10 features are listed in Table D-5.

- ~~~~~~~~~~ 
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Value Name

1. .0145
2. .025
3. .132 distribution of comments vs. statement lines
14. - .368 number of lines
5. -.1141 number of multiple statements of assignments

used
6. .064
7. .638 number of semicolons
8. .00 2
9. .273 mean variable name length

10. - .0 79
11. — .0 17
12. .082
13. - .118
14. - .085
15. .155 number of I/O statements
16. .207 number of external procedures used
17. — .012
18. — .088
19. - .006
20. — .07 2
21. - .235 number of instances of CALL
22. - .283 numb e~’ of instances of DO
23. - .070
24 . .048
25. .072
26. — .006 — —

27 . .0 76 
— 

—

28. - .213 average density of nonblarik characters
outside comments

29. .025
30. — .099
31. .067
32. — .083

Table D-3 Table of Coefficients and Selected Set of 10 l eatures for
Separating Class 3 from Classes 1, 2, and 14

(The named features represent the reduced feature set.)
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Value Name

1. .088
2. .008
3. .066
4. -.278 number of lines
5. .004
6. -.063
7. -.387 number of semicolons
8. .032

9. .223 mean variable name length
10. -.205 if-then—else balance
11. - .082
12. .062
13. .349 number of assignment statements
14. .001
15. - .243 number of I/O statements
16. -.183 number of external procedures used
17. -.065
18. .077
19. — .077
20. .078 ~~~~~ -

21. .574 number of instances of CALI~ — -- 
~

22. .0002 ~_ -- -— 
- —

23. -.0~42 — -

- - - - 21u -.098

— — — —
-- -

~~~~~~~~ 25. .0001
26. -.008
27. .142 number of based variables
28. — .044
29. — .075
30. — .°1.3
31. — .146
32. .151 number of instances of RETURN

I

Table D-4 Coefficients and Selected Set of 10 Features used for Separating
Class 2 from Classes 1 and 4

(The named features represent the reduced feature set.)
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Value Name

1. — .070
2. -.040
3. — .091
4. .484 number of lines
5. .068
6. -.361 number of variables
7. -.324 number of semicolons
8. .170 maximum nesting
9. -.341 mean variable name length
10. .014
11. - .027
12. -.224 mean n umber of operators per assignment

statement
13. .164
14. .099
15. -.007 __ _— ——

~~~~~~~~~~~~~~~

16 - 047
17.

- — ~~~~~~ - .207 number of complex ELSE clauses
19. -.0004
20. .217 number of instances of GOTO
21. .052
22. -.008
23. — .021
24. - .283 number of labels
25. -.029
26. -.019
27. -.001
28. — .003
29. .036
30. .190 number of global variables
31. .145
32. .112

Table D-5 Coefficients and Selected Set of 10 Features used for Separating
Class 1 f r om Class 14
(The named features represent the reduced feature set.)
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0—3

D.2. CLASSIFICATION OF PROGRAMMERS USING 10 FEATURES ON ENTIRE DESIGN

SET

The next step in the analysis procedure was to rerun the logic described

in Section 4.2.3 .1., using only the best subset of 10 features at each leve l

of the logic (the selected set of 10 to be used at each logic level is des-

cribed in Secti .n 4.2.3.1.).

----
-

~~
Figure 0-8 represents the direction ai ~t b — ~e ~fëdf~reshold value

--~~~~~~~~~~~
-

---_ j ~b ch—&ep~~i’ates programs of programmer 3 from those of programmers 1, 2, and

4 (via ardgSldl where group 1 = programmer 3, group 2 = (program m er 1 ,

programmer 2, programmer 4), and measurement reduction where measurenents

used are 3, 4 , 5 , 7, 9, 15 , 16 , 21 , 22 , 2 8 ) .  W i t h  the selected threshold

va lue , correct classifications were made 85% of the time .

Figure D-9 represents the direction and the selected threshold value

which separa tes programs of programmer 2 from those of programmers 1 and 4

( v i a  ardg$ldl where group 1 programmer 2, group 2 = (programmer 1, program-

mer 4); and measurement reduction where measurements used are 4, 7, 9, 10,

13 , 15, 16 , 21 , 27 , 32) .  With the selected threshold value , correct classi-

fications at this level of the logic were made 89% of the t ime .

Figure D-1O represents the direction and the selected threshold value

which separates programs of programmer 1 from those of programmer 4 (via

argd$ldl where group 1 programmer 1, group 2 = programmer  14 ; selec ted

measurements used are 4, 6, 7, 8, 9, 12 , 18, 20 , 24 , 30). With the selected

0-17
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Fi gure —8 Direction and Threshold for Separating Programs of Programmer 3
from Those of Programmers 1, 2, and 4 (10 Features)
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Figure D-9 Direction and Threshold for Separating Programs of Programmer 2
from Those of Programmers 1 and 4 (10 Features)
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D-6

Figure D-]0 Direction and Threshold Value for Separating Programs of Programmer 1
from Those of Programmer 14 (10 Features)
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threshold value, correct classifications at this level of the logic were made

88% of the time.

The logic is complete , and an overall evaluation (logicevi) of this

logic was run on the design set. Correct classifications, as shown below,

were made 73% of the time.

True Class

prgl prg2 prg3 prgl+

prgl 142 2 0 
prg2 5 33 1 3

Classified
prg3 3 11 f28 7

prg4 , 3 2 1 10

Thus, the number of features has been reduced by almost 70%, and the percent-

age of correct classifications has only been reduced by 12%.

0.3. Progre.mmer Classification using 10 Features on Design and Test Set

The final step in the analysis process was to divide the data set into

a design and test group (each with 50% of the data), redesign the logic

described in Section 0.2. on the new design set of data and test this

logic on the test set of data.

Figure D-1l represents the direction and the selected threshold value

which separates programs of programmer 3 from those of programmers 1, 2, and
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Figure fl-li Direction and Threshold Value for Separating Programs of Programmer 3
from Those of Programmers 1, 2, and 4 (10 Features , Design Set)
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14 (via ardg$ldl where group 1 program 3 , group 2 (programmer 1, programmer

2 , programmer 4) ;  and measurement reduction where measurements used are 3, 14 ,

5, 7, 9, 15 , 16 , 21, 22, 28). On the design set, with the selected threshold

value , correct classifications were made 90% of the time .

Figure D-12 represents the direction and the selected threshold value

which separates programs of programmer 2 from those of programmers 1 and 14

(via ardg$ldl where group 1 = programmer 2, group 2 (programmer 1, program-

mer 14) ;  and measuremen t reduction where measurements used are ~~, 7, 9, 10,

13, 15, 16 , 21, 27 , 32). On the design set, with the selected threshold

value, correct classifications at this level of the logic were made 87% of

the time .

Figure D-13 represents the direction and the selected threshold value

wh ich separates programs of programmer 1 from those of programmer 4 (via

ar~d~3ldl where group 1 = programmer 1, group 2 = programmer 4, selected

measurements used are 4, 6, 7, 8, 9, 12 , 18, 20, 24, 30~ . On the design set,

wi th the selected threshold value , correct classifications at this level of

the logic were made 83% of the time .

The logic is now complete , and an overall evaluation (logicevi) of this

logic was tested using the design data set. Correct classifications , as

shown below, were made 74% of the time.
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Figure D-12 Direction and Threshold Value for Separating Programs of Programmer 2
from Those of Programmers 1 and 14 (10 Features, Design Set)
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Figure D-l3 Direction and Threshold Value for Separating Programs of Programmer 1
from Those of Programmer 4 (10 Features , Desi gn Set)
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True Class

prgl prg2 prg 3 prg4

prgl 19 2 0 0

prg2 2 18 0 3
Class ified

prg3 1 14 15 3

prgt4 5 0 0 6

An overall evaluation of this logic was tested using the test data set.

Correct classifications , as shown below, were made 60% of the time.

True Class

prgl prg2 prg3 prg4
- _

prgl 10 1 0 2

prg2 6 20 3 3
Classified _______

prg3 3 2 10 1

prg4 7 1 2 6
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